基本信息出版社:Academic Press
页码:576 页
出版日期:2004年09月
ISBN:0126801452
条形码:9780126801453
装帧:精装
正文语种:英语
丛书名:Biomedical Engineering
内容简介 在线阅读本书
Diagnostic Ultrasound Imaging provides a comprehensive introduction to and a state-of-the-art review of the essential science and signal processing principles of diagnostic ultrasound. The progressive organization of the material serves beginners in medical ultrasound science and graduate students as well as design engineers, medical physicists, researchers, clinical collaborators, and the curious.
This it the most comprehensive and extensive work available on the core science and workings of advanced digital imaging systems, exploring the subject in a unified, consistent and interrelated manner. From its antecedents to the modern day use and prospects for the future, this it the most up-to-date text on the subject.
Diagnostic Ultrasound Imaging provides in-depth overviews on the following major aspects of diagnostic ultrasound: absorption in tissues; acoustical and electrical measurements; beamforming, focusing, and imaging; bioeffects and ultrasound safety; digital imaging systems and terminology; Doppler and Doppler imaging; nonlinear propagation, beams and harmonic imaging; scattering and propagation through realistic tissues; and tissue characterization.
· Based on the author's over thirty-five years of experience in developing laboratory methodology and standards and conducting research in ultrasound.
· Conveys the fundamentals of diagnostic ultrasound as well as state-of-the-art reviews of major topics. from a historical perspective. Matlab MATLAB problems and examples included.
. MATLAB problems and examples included
作者简介 Professor Szabo has contributed to the fundamental understanding and design of surface acoustic wave signal processing devices, to novel means of transduction and measurement for nondestructive evaluation using ultrasound, to seismic signal processing applied to acoustic imaging, and to the research and development of state-of-the-art diagnostic ultrasound imaging systems. He has published over seventy papers in these areas. His current interests in ultrasound are overcoming present limitations in imaging the body and finding new ways of extracting noninvasively diagnostically useful information about tissue structure, health and function. His research includes the following methods: digital beamforming, signal processing, miniature transducer arrays, nonlinear acoustic propagation, ultrasound-induced bioeffects, broadband measurement techniques, simulation and measurement of wave propagation in inhomogeneous media and scanning acoustic microscopy. Dr. Szabo is a Fellow of the Acoustical Society of America, a Senior Member of the IEEE, a U.S. delegate to the International Electrotechnical Commission and a winner of a best paper award in the IEEE UFFC/SU Transactions.
编辑推荐 Review
"You might think: "Yet another book covering a well-known medical topic?" - yes, that is right but it is written from a technical insider in a way that helps to understand the essential physics and signal processing techniques behind modern imaging systems as well as the processing of the resulting echo information step-by-step. Some of the 15 chapters are dedicated to one special part or "inside" of a diagnostic imaging system: Various transducer construction and system technology or beamforming methods. These different topics are explained on a level that is suitable both for newcomers and for experienced readers. Basic equations and underlying concepts are given to understand the function of the latest commercial products used in medical applications. A reference list citing fundamental publications is added to each chapter. But how does ultrasound interact with tissue or blood and what about nonlinear aspects during propagation? The book also gives detailed and enhanced answers, explains well-known models concerning bioeffects, scattering or non-linear effects caused by contrast agents within the remaining chapters - always having modern applications and examples in mind. The author is successful to span the descriptive bridge between the technology implemented "inside" a modern ultrasonic imaging system for emitting and for processing the information that is coming back from "outside" after interacting with the human body. Theory and reality is combined in a comprehensive, illustrative and practical manner to enjoy the reading and learning of diagnostic ultrasound imaging." - Christian Kollmann, Vienna, European Journal of Ultrasound "This book is well suited to MATLAB, a high-level programming language, including demonstrations of figures and examples with MATLAB programming lines. Accompanying program sets, solutions, and programs can be found on the Elsevier web site. In addition, a review of Fourier transforms is included with step-by-step worked out examples. This book is recommended for universities offering graduate programs in diagnostic ultrasound imaging, engineering, and medical physics. It fills the need for an advanced scientific text of diagnostic ultrasound research." - Martha F. Earl, Reference Coordinator, University of Tennessee Graduate School of Medicine, Preston Medical Library
Review
"You might think: "Yet another book covering a well-known medical topic?" - yes, that is right but it is written from a technical insider in a way that helps to understand the essential physics and signal processing techniques behind modern imaging systems as well as the processing of the resulting echo information step-by-step.
Some of the 15 chapters are dedicated to one special part or "inside" of a diagnostic imaging system: Various transducer construction and system technology or beamforming methods. These different topics are explained on a level that is suitable both for newcomers and for experienced readers. Basic equations and underlying concepts are given to understand the function of the latest commercial products used in medical applications. A reference list citing fundamental publications is added to each chapter. But how does ultrasound interact with tissue or blood and what about nonlinear aspects during propagation? The book also gives detailed and enhanced answers, explains well-known models concerning bioeffects, scattering or non-linear effects caused by contrast agents within the remaining chapters - always having modern applications and examples in mind.
The author is successful to span the descriptive bridge between the technology implemented "inside" a modern ultrasonic imaging system for emitting and for processing the information that is coming back from "outside" after interacting with the human body. Theory and reality is combined in a comprehensive, illustrative and practical manner to enjoy the reading and learning of diagnostic ultrasound imaging."
- Christian Kollmann, Vienna, European Journal of Ultrasound
"This book is well suited to MATLAB, a high-level programming language, including demonstrations of figures and examples with MATLAB programming lines. Accompanying program sets, solutions, and programs can be found on the Elsevier web site. In addition, a review of Fourier transforms is included with step-by-step worked out examples.
This book is recommended for universities offering graduate programs in diagnostic ultrasound imaging, engineering, and medical physics. It fills the need for an advanced scientific text of diagnostic ultrasound research."
- Martha F. Earl, Reference Coordinator, University of Tennessee Graduate School of Medicine, Preston Medical Library