读书人

高中数学全套教案(新教材)

发布时间: 2008-10-03 05:05:40 作者: 3come

资料类别: 新教材高中数学教案全套 rar压缩文件/word文档 资料下载: 点击这里下载

第一章 集合与简易逻辑
第一教时
教材:集合的概念
目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。
过程:
一、引言:(实例)用到过的“正数的集合”、“负数的集合”
如:2x-1>3 x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
如:自然数的集合 0,1,2,3,……
如:高一(5)全体同学组成的集合。
结论: 某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
指出:“集合”如点、直线、平面一样是不定义概念。
二、集合的表示: { … } 如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}
用拉丁字母表示集合:a={我校的篮球队员} ,b={1,2,3,4,5}
常用数集及其记法:
1. 非负整数集(即自然数集) 记作:n
2. 正整数集 n*或 n
3. 整数集 z
4. 有理数集 q
5. 实数集 r
集合的三要素: 1。元素的确定性; 2。元素的互异性; 3。元素的无序性
(例子 略)
三、关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集a 记作 a?a ,相反,a不属于集a 记作 a?a (或a?a)
例: 见p4—5中例
四、练习 p5 略
五、集合的表示方法:列举法与描述法
1. 列举法:把集合中的元素一一列举出来。
例:由方程x2-1=0的所有解组成的集合可表示为{?1,1}
例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}
2. 描述法:用确定的条件表示某些对象是否属于这个集合的方法。
① 语言描述法:例{不是直角三角形的三角形}再见p6例
② 数学式子描述法:例 不等式x-3>2的解集是{x?r x-3>2}或{x x-3>2}或{x:x-3>2} 再见p6例
六、集合的分类
1.有限集 含有有限个元素的集合
2.无限集 含有无限个元素的集合 例题略
3.空集 不含任何元素的集合 ?
七、用图形表示集合 p6略
八、练习 p6
小结:概念、符号、分类、表示法
九、作业 p7习题1.1

读书人网 >高考数学

热点推荐