求助各位高手一道题!!
利用递归树来找出递归式T(n)=T(n-a)+T(n-a)+cn的渐近紧确解,其中a> =1且c> 0是常数。 请各位帮助 不甚感激!!
[解决办法]
t(n)=n^(1/2)*t(n^(1/2))+n 代价:n
t(n^(1/2)=n^(1/4)*t(n^(1/4))+n^(1/2) 代价:n^(1/2)*n^(1/2)==n
t(n^(1/4)=n^(1/8)*t(n^(1/8))+n^(1/4) 代价:n^(1/2)*n^(1/4)*n^(1/4)==n
t(n^(1/8)=n^(1/16)*t(n^(1/16))+n^(1/8) 代价:n^(1/2)*n^(1/4)*n^(1/8)*n^(1/8)==n
....
t(16)=4t(4)+16;
t(4)=2t(2)+4;
应该是:
O(Nlog(logN))
[解决办法]
lgn-1 logn logn
∑n/(logn-i) = n/logn + n/(logn-1) + ... + n/1 = ∑n/i = n∑1/i;
i=0 i=1 i=1
log(logn + 1) logn log(logn) logn
其中易证------------- = < ∑1/i <= --------- + 1,所以∑1/i =theta(log(logn)),
log e i=1 log e i=1
原来那个就是theta(nlog(logn))