读书人

纯真时期的解析几何哪位高手人能够铭

发布时间: 2012-05-01 12:48:58 作者: rapoo

纯真时期的解析几何,谁人能够铭记?
遇到一个有问题,三顾大牛求辅佐!!
1.问题:
现有一条线段,已知线段的两个端点。
求出该线段的中点,以该中点半径为 smallRadius 的圆,求该线段中垂线与圆的两个交点。

2.按理说:
过圆中心做一条直线,必有2解(画图可以看到直线和圆有两个交点)

3.蛋疼的地方:
求解的过程中竟然时不时的出现 delta = b^2-4*a*c < 0 的情况,和2 严重矛盾。

4.我的测试方案:
我写了一个方法,传入线段的两个点,和以线段中点为圆心的一个圆。
我100%确定,该线段的长度大于上述圆的直径(必须保证有两个交点么~)。
返回一个点数组,点数组包含了2解。

5。尾声:
为什么出现 delta < 0 这种奇葩的情况,求指点。
如能点醒我这块朽木,100整分奉送,在线等!!高手素来~~~

代码如下:

Java code
package org.bruce.vertices.controller.geometry;/** * @author Bruce Yang * 用于打印调试~ */public class CGDbg {    public static final boolean DEBUG_MODE = true;        // 方便进行调试信息的输出,开关~    public static void println(Object info) {        if(DEBUG_MODE) {                        System.out.println(info);        }    }    public static void print(Object info) {        if(DEBUG_MODE) {                        System.out.print(info);        }    }}

***********************************************
Java code
package org.bruce.vertices.controller.geometry;/** * @author BruceYang * 这个是对通用一次直线方程 A*x + B*y + C = 0 的封装~ * 本来封装的是斜截式,不过发现当斜率k不存在的时候会比较麻烦,因此该用一般式 * 再个就是接着用一般式的演变方式 x + B/A*y + C/A = 0,但是考虑到可能存在x == 0 的情况,因此又舍弃~ *  * 娘的,一般式还是他妈的无济于事啊,改回斜截式,多提供两个成员变量: * 一个boolean表示k是否存在,一个额外的float表示k不存在的时候直线方程 x=***, *** 等于多少~ */public class CGLine {    // 特别声明为public类型,免得到时候访问的时候麻烦,到时候直接点就行了    private boolean kExists;    // 大部分情况下 k 都应该是存在的,因此提供一个 true 的默认值~    public float k = 77885.201314f;    public float b = 13145.207788f;    public float extraX = 52077.881314f;            /**     * 这是当 k 存在时的构造方法~     * @param k     * @param b     */    public CGLine(float k, float b) {        this.kExists = true;        this.k = k;        this.b = b;    }        /**     * 已知两点,求直线的方程~     * @param p1     * @param p2     */    public CGLine(CGPoint p1, CGPoint p2) {        if((p1.x - p2.x) != 0) {            CGDbg.println("y = k*x + b, k exits!!");            this.kExists = true;            this.k = (p1.y - p2.y)/(p1.x - p2.x);            this.b = (p1.y - p1.x * k);        } else {            CGDbg.println("y = k*x + b, k doesn't exists!!");            // 如果走进这个分支,表示直线垂直于x轴,斜率不存在,保留k的默认值~            this.kExists = false;            this.extraX = p1.x;        }        CGDbg.print("过p1("+p1.x+", " +p1.y + "), p2("+p2.x+", "+p2.y+")两点的直线方程表达式为: ");        if(kExists) {            CGDbg.println("y = " + k + "*x + " + b);        } else {            CGDbg.println("x = " + extraX + "(垂直于x轴!)");        }    }        /**     * 点斜式~     * @param p    某点     * @param k    过该点的直线的斜率     */    public CGLine(float k, CGPoint p) {        /**         * (y-y') = k*(x-x')         * 变形成斜截式为:         * y = k*x + y' - k*x'         * k = k, b = y'-k*x'         */        this.kExists = true;        this.k = k;        this.b = p.y - k * p.y;    }        /**     * 这是当 k 不存在时的构造方法~     * @param extraX     */    public CGLine(float extraX) {        this.kExists = false;        this.extraX = extraX;    }        @Override    public String toString() {        return "Line.toString()方法被调用,y = k*x + b斜截式, k=" + this.k + ", b=" + this.b                +", kExists=" + this.kExists + ", extraX=" + this.extraX;    }        public boolean iskExists() {        return kExists;    }    public void setkExists(boolean kExists) {        this.kExists = kExists;    }}

***********************************************
Java code
package org.bruce.vertices.controller.geometry;/** * @author BruceYang * 对点的抽象~ */public class CGPoint {    public float x;    public float y;        public CGPoint() {            }    public CGPoint(float x, float y) {        this.x = x;        this.y = y;    }        @Override    public String toString() {        return "x=" + this.x + ", y=" + this.y;    }} 


***********************************************
Java code
package org.bruce.vertices.controller.geometry;/** * @author BruceYang */public class CGGeometryLib {        /**     * @param p0    第一个点的坐标     * @param p1    第二个点的坐标     * @return        两个点之间的距离     * 计算出两点之间的距离     */    public static float getDistanceBetween2Points(CGPoint p0, CGPoint p1) {        float distance = (float)Math.sqrt(Math.pow(p0.y - p1.y, 2) + Math.pow(p0.x - p1.x, 2));        return distance;    }        /**     * 获取传入两点的中点~     * @param p1     * @param p2     * @return     */    public static CGPoint getMiddlePoint(CGPoint p1, CGPoint p2) {        return new CGPoint((p1.x + p2.x) / 2.0f, (p1.y + p2.y) / 2.0f);    }        /**     * 封装一下 Math 的 pow 、sqrt 方法,调用起来方便一些~     * @param d1     * @param d2     * @return     */    public static double pow(double d1, double d2) {        return Math.pow(d1, d2);    }    public static double sqrt(double d) {        return Math.sqrt(d);    }    public static double sin(double theta) {        return Math.sin(theta);    }    public static double cos(double theta) {        return Math.cos(theta);    }        /**     * 传入线段的两个端点,获取中点,以该中点为圆心做半径为 radius 的圆,     * 经过线段中点做线段的垂线,返回垂线与圆的两个交点~     * Objective-C 里面的结果有点儿问题,不知道是什么原因,来java 里面碰碰有运气~     * @param p1        线段端点1     * @param p2        线段端点2     * @param radius    圆半径     * @return            线段中垂线与圆的两个交点~     */    public static CGPoint[] getWhatIWanted(CGPoint p1, CGPoint p2, float radius) {        CGPoint[] target = new CGPoint[2];        CGPoint pMiddle = getMiddlePoint(p1, p2);//        float segLength = getDistanceBetween2Points(p1, p2);                CGLine l1 = new CGLine(p1, p2);        if(l1.iskExists()) {            if(l1.k != 0) {                float kOfNewLine = -1 / l1.k;                CGLine newLine = new CGLine(kOfNewLine, pMiddle);                                // 经过数学运算,得出二元一次方程组的表达式                double A = pow(newLine.k, 2) + 1;                double B = 2 * (newLine.k * newLine.b - newLine.k * pMiddle.y - pMiddle.x);                double C = pow(pMiddle.x, 2) + pow((newLine.b - pMiddle.y), 2) - pow(radius, 2);                double delta = pow(B, 2) - 4 * A * C;                                if(delta < 0) {    // 经实践检验有一定几率走入该分支,必须做特殊化处理~                    CGDbg.println("竟然会无解,他妈的怎么回事儿啊!");                    target[0] = new CGPoint(pMiddle.x, pMiddle.y - radius);                    target[1] = new CGPoint(pMiddle.x, pMiddle.y + radius);                } else {                    double x1 = (-B + sqrt(delta)) / (2 * A);                    double y1 = newLine.k * x1 + newLine.b;                    target[0] = new CGPoint((float)x1, (float)y1);                                        double x2 = (-B - sqrt(delta)) / (2 * A);                    double y2 = newLine.k * x2 + newLine.b;                    target[1] = new CGPoint((float)x2, (float)y2);                }            } else {                target[0] = new CGPoint(pMiddle.x, pMiddle.y - radius);                target[1] = new CGPoint(pMiddle.x, pMiddle.y + radius);            }        } else {            target[0] = new CGPoint(pMiddle.x - radius, pMiddle.y);            target[1] = new CGPoint(pMiddle.x + radius, pMiddle.y);        }        System.out.println("target[0] 距离中点的距离为:" + getDistanceBetween2Points(target[0], pMiddle));        System.out.println("target[1] 距离中点的距离为:" + getDistanceBetween2Points(target[1], pMiddle));        return target;    }        /**     * @param args     */    public static void main(String[] args) {        double currentRadian = 0;        double deltaRadian = Math.PI / 180;        float bigRadius = 50;        float smallRadius = 20;        CGPoint origin = new CGPoint(0, 0);    // 原点~        CGPoint tail = null;    // tail 是尾巴、末梢的意思~        for(int i = 0; i < 360; ++ i) {            System.out.println(" -- 第 "+ i + "度!");            tail = new CGPoint(bigRadius*(float)cos(currentRadian), bigRadius*(float)sin(currentRadian));            currentRadian += deltaRadian;            getWhatIWanted(origin, tail, smallRadius);        }    }} 




[解决办法]
public CGLine(float k, CGPoint p) {
? /**
? * (y-y') = k*(x-x')
? * 变形成斜截式为:
? * y = k*x + y' - k*x'
? * k = k, b = y'-k*x'
? */
? this.kExists = true;
? this.k = k;
? this.b = p.y - k * p.y;
? }
? ?
this.b = p.y - k*p.x;
这里错了,查了好久,先查delta发现没问题。在查k也没问题。中点也没问题
查到这里出问题了
float kOfNewLine = -1 / l1.k;
? CGLine newLine = new CGLine(kOfNewLine, pMiddle);
发现那个b有错误。。

[解决办法]
写了一个求交点的方法,看看怎么样
Java code
public class Test {    public static void main(String[] args) {        test(-3, 7, 5, -3, 3);    }    static void test(double x1,double y1,double x2,double y2,double r){                double k = (y2 -y1) / (x2 - x1);//斜率        double k2 = -1.0 / k;//中垂线斜率        double midX = (x1 + x2) / 2;//中点x        double midY = (y1 + y2) / 2;//中点y        double a = Math.atan(k2);//中垂线与x轴夹角        double y = r * Math.sin(a);//y轴偏移量        double x = r * Math.cos(a);//x轴偏移量        double resultX1 = k > 0 ? midX - x : midX + x;//上方交点x坐标        double resultY1 = midY + y;//上方交点y坐标        double resultX2 = k > 0 ? midX + x : midX - x ;//下方交点x坐标        double resultY2 = midY - y;//下方交点y坐标        System.out.println("result: ");        System.out.println(resultX1 + "," + resultY1);        System.out.println(resultX2 + "," + resultY2);    }}
[解决办法]
Java code
public class NiDongDe{    /**     * @param args     */    public static void main(String[] args)    {        Point one = new Point(0, 0);        Point two = new Point();        double smallR = 20;        double bigR = 50;        for (int i = 0; i < 360; ++i)        {            two.x = bigR * Math.cos(i * Math.PI / 180);            two.y = bigR * Math.sin(i * Math.PI / 180);            System.out.println(i + "度  " + two.toString() + "      " + countCrossPoint(one, two, smallR));        }    }    private static String countCrossPoint(Point one, Point two, double smallR)    {        // 转90度后use ax + by + c = 0        double a = 1;        double b = 1;        double k = 0;        if (one.x == two.x || (Math.abs(one.x - two.x))<Math.pow(1, -10))        {            a = 0;        }        else if (one.y == two.y|| (Math.abs(one.y - two.y))<Math.pow(1, -10))        {            b = 0;        }        else        {            k = (two.x - one.x) / (two.y - one.y);        }        if (k == 0)        {            // 两种特殊情况            if (a == 0)            {                double y = (one.y + two.y) / 2;                double x1 = smallR + (one.x + two.x) / 2;                double x2 = (one.x + two.x) / 2 - smallR;                return "(" + x1 + ", " + y + ") (" + x2 + ", " + y + ")";            }            else if (b == 0)            {                double x = (one.x + two.x) / 2;                double y1 = smallR + (one.y + two.y) / 2;                double y2 = (one.y + two.y) / 2 - smallR;                return "(" + x + ", " + y1 + ") (" + x + ", " + y2 + ")";            }        }        else        {            // 一般情况了啦            // 公式整理你懂的:            // [(y2-y1)/(x2-x1)*x + y2 -x2*(y2-y1)/(x2-x1) -(y1+y2)/2]^2 + [x - (x1+x2)/2]^2 = smallR^2            //  |<-    p    ->|    |<-              w              ->|          |<-   q   ->|            double p = (two.y -one.y)/(two.x - one.x);            double w = two.y - two.x * (two.y - one.y)/(two.x - one.x) - (one.y + two.y)/2;            double q = (one.x + two.x)/2;            // reserve = y2 -x2*(y2-y1)/(x2-x1) we'll use it later            double reserve = two.y - two.x*(two.y - one.y)/(two.x - one.x);            // now we have [px + w]^2 + [x - q]^2 = smallR^2            //再整理你懂的:            // (p^2 + 1)x^2 + (2pw -2q)x + (q^2-smallR^2)=0            //     a1             b1             c1            double a1 = Math.pow(p, 2) + 1;            double b1 = 2*p*w - 2*q;            double c1 = Math.pow(q, 2) - Math.pow(smallR, 2);            // finally~            double x1 = (-1*b1 + Math.sqrt((Math.pow(b1, 2) - 4*a1*c1))) / (2*a1);            double x2 = (-1*b1 - Math.sqrt((Math.pow(b1, 2) - 4*a1*c1))) / (2*a1);            // y = px + reserve            double y1 = p * x1 + reserve;            double y2 = p * x1 + reserve;            return "(" + x1 + ", " + y1 + ") (" + x2 + ", " + y2 + ")";        }        return "";    }}class Point{    public double x;    public double y;    Point()    {    }    Point(double x, double y)    {        this.x = x;        this.y = y;    }        public String toString(){        return "(" + this.x + ", " + this.y + ")";    }} 


[解决办法]
如果要求那两个点,倒是很简单的。
中点 x0,y0,源直线的角度d。中垂线角度是d- 90 小圆半径 r
一个点是?
x1 = x0 + r*cos(d- 90)?
y1 = y0 + r*sin(d- 90)

另外一个点

x2 = x0 - r*cos(d- 90)?
y2 = y0 - r*sin(d- 90)

读书人网 >J2SE开发

热点推荐