分布式计算开源框架Hadoop入门实践(二)
其实参看Hadoop官方文档已经能够很容易配置分布式框架运行环境了,不过这里既然写了就再多写一点,同时有一些细节需要注意的也说明一下,其实
也就是这些细节会让人摸索半天。Hadoop可以单机跑,也可以配置集群跑,单机跑就不需要多说了,只需要按照Demo的运行说明直接执行命令即可。这里
主要重点说一下集群配置运行的过程。
环境
7台普通的机器,操作系统都是Linux。内存和CPU就不说了,反正Hadoop一大特点就是机器在多不在精。JDK必须是1.5以上的,这个切记。7台机器的机器名务必不同,后续会谈到机器名对于MapReduce有很大的影响。
部署考虑
正如上面我描述的,对于Hadoop的集群来说,可以分成两大类角色:Master和Slave,前者主要配置NameNode和
JobTracker的角色,负责总管分布式数据和分解任务的执行,后者配置DataNode和TaskTracker的角色,负责分布式数据存储以及任
务的执行。本来我打算看看一台机器是否可以配置成Master,同时也作为Slave使用,不过发现在NameNode初始化的过程中以及
TaskTracker执行过程中机器名配置好像有冲突(NameNode和TaskTracker对于Hosts的配置有些冲突,究竟是把机器名对应
IP放在配置前面还是把Localhost对应IP放在前面有点问题,不过可能也是我自己的问题吧,这个大家可以根据实施情况给我反馈)。最后反正决定一
台Master,六台Slave,后续复杂的应用开发和测试结果的比对会增加机器配置。
实施步骤
? ??
Hadoop的基础配置文件是hadoop-default.xml,看Hadoop的代码可以知道,默认建立一个Job的时候会建立Job的Config,Config首先读入hadoop-default.xml的配置,然后再读入hadoop-site.xml的配置(这个文件初始的时候配置为空),hadoop-site.xml中主要配置你需要覆盖的hadoop-default.xml的系统级配置,以及你需要在你的MapReduce过程中使用的自定义配置(具体的一些使用例如final等参考文档)。
? ??
以下是一个简单的hadoop-site.xml的配置:
? ??
? ?fs.default.name//你的namenode的配置,机器名加端口
? ?hdfs://10.2.224.46:54310/
? ?mapred.job.tracker//你的JobTracker的配置,机器名加端口
? ?hdfs://10.2.224.46:54311/
? ?dfs.replication//数据需要备份的数量,默认是三
? ?1
? ? hadoop.tmp.dir//Hadoop的默认临时路径,这个最好配置,如果在新增节点或者其他情况下莫名其妙的DataNode启动不了,就删除此文件中的tmp目录即可。不过如果删除了NameNode机器的此目录,那么就需要重新执行NameNode格式化的命令。
? ? /home/wenchu/hadoop/tmp/
? ?mapred.child.java.opts//java虚拟机的一些参数可以参照配置
? ?-Xmx512m
??dfs.block.size//block的大小,单位字节,后面会提到用处,必须是512的倍数,因为采用crc作文件完整性校验,默认配置512是checksum的最小单元。
??5120000
??The default block size for new files.
? ??
hadoop-env.sh文件只需要修改一个参数:
? ? # The java implementation to use.??Required.
export JAVA_HOME=/usr/ali/jdk1.5.0_10?
? ??
配置你的Java路径,记住一定要1.5版本以上,免得莫名其妙出现问题。
? ??
Masters中配置Masters的IP或者机器名,如果是机器名那么需要在/etc/hosts中有所设置。Slaves中配置的是Slaves的IP或者机器名,同样如果是机器名需要在/etc/hosts中有所设置。范例如下,我这里配置的都是IP:
? ? Masters:
10.2.224.46
??Slaves:
10.2.226.40
10.2.226.39
10.2.226.38
10.2.226.37
10.2.226.41
10.2.224.36?
? ?
件即可,可以打开这个文件看看,也就是rsa的公钥作为key,user@IP作为value。此时可以试验一下,从master
ssh到slave已经不需要密码了。由slave反向建立也是同样。为什么要反向呢?其实如果一直都是Master启动和关闭的话那么没有必要建立反
向,只是如果想在Slave也可以关闭Hadoop就需要建立反向。
新增以下内容:(具体的内容根据你的安装路径修改,这步只是为了方便使用)
? ? export HADOOP_HOME=/home/wenchu/hadoop-0.17.1
export PATH=$PATH:$HADOOP_HOME/bin
? ? 修改完毕后,执行source /etc/profile来使其生效。
以上步骤就可以启动Hadoop的分布式环境,然后在Master的机器进入Master的安装目录,执行hadoop jar hadoop-0.17.1-examples.jar wordcount输入路径和输出路径,就可以看到字数统计的效果了。此处的输入路径和输出路径都指的是HDFS中的路径,因此你可以首先通过拷贝本地文件系统中的目录到HDFS中的方式来建立HDFS中的输入路径:
hadoop dfs -copyFromLocal /home/wenchu/test-in test-in。其中/home/wenchu/test-in是本地路径,test-in是将会建立在HDFS中的路径,执行完毕以后可以通过hadoop dfs ls看到test-in目录已经存在,同时可以通过hadoop dfs ls test-in查看里面的内容。输出路径要求是在HDFS中不存在的,当执行完那个demo以后,就可以通过hadoop dfs ls 输出路径看到其中的内容,具体文件的内容可以通过hadoop dfs cat文件名称来查看。
经验总结和注意事项(这部分是我在使用过程中花了一些时间走的弯路):
必须把集群中机器都配置上去,就算在各个配置文件中使用的是IP。这个吃过不少苦头,原来以为如果配成IP就不需要去配置Host,结果发现在执行
Reduce的时候总是卡住,在拷贝的时候就无法继续下去,不断重试。另外如果集群中如果有两台机器的机器名如果重复也会出现问题。
可以看到那些block了。Block的数量将会直接影响到Map的个数。当然可以通过配置来设定Map和Reduce的任务个数。Map的个数通常默认
和HDFS需要处理的blocks相同。也可以通过配置Map的数量或者配置minimum split size来设定,实际的个数为:max(min(block_size,data/#maps),min_split_size)。Reduce可以通过这个公式计算:0.95*num_nodes*mapred.tasktracker.tasks.maximum。
总的来说出了问题或者启动的时候最好去看看日志,这样心里有底。
Hadoop中的命令(Command)总结
这部分内容其实可以通过命令的Help以及介绍了解,我主要侧重于介绍一下我用的比较多的几个命令。Hadoop dfs 这个命令后面加参数就是对于HDFS的操作,和Linux操作系统的命令很类似,例如:
Hadoop dfs ls就是查看/usr/root目录下的内容,默认如果不填路径这就是当前用户路径;Hadoop dfs rmr xxx就是删除目录,还有很多命令看看就很容易上手;Hadoop dfsadmin report这个命令可以全局的查看DataNode的情况;Hadoop job后面增加参数是对于当前运行的Job的操作,例如list,kill等;Hadoop balancer就是前面提到的均衡磁盘负载的命令。
其他就不详细介绍了。
? ? ? ? ? ? ? ??