读书人

java并发编程-AbstractQueuedSynchron

发布时间: 2012-09-07 10:38:15 作者: rapoo

java并发编程--AbstractQueuedSynchronizer加锁和解锁分析(二)

?

在java.util.concurrent.locks包中有很多Lock的实现类,常用的有ReentrantLock、ReadWriteLock(实现类ReentrantReadWriteLock),其实现都依赖java.util.concurrent.AbstractQueuedSynchronizer类,实现思路都大同小异,因此我们以ReentrantLock作为讲解切入点。

1. ReentrantLock的调用过程

经过观察ReentrantLock把所有Lock接口的操作都委派到一个Sync类上,该类继承了AbstractQueuedSynchronizer:

?

static abstract class Sync extends AbstractQueuedSynchronizer 
?

?

Sync又有两个子类:

final static class NonfairSync extends Sync
final static class FairSync extends Sync
?

显然是为了支持公平锁和非公平锁而定义,默认情况下为非公平锁。

先理一下Reentrant.lock()方法的调用过程(默认非公平锁):


java并发编程-AbstractQueuedSynchronizer加锁和好锁分析(二)

这些讨厌的Template模式导致很难直观的看到整个调用过程,其实通过上面调用过程及AbstractQueuedSynchronizer的注释可以发现,AbstractQueuedSynchronizer中抽象了绝大多数Lock的功能,而只把tryAcquire方法延迟到子类中实现。tryAcquire方法的语义在于用具体子类判断请求线程是否可以获得锁,无论成功与否AbstractQueuedSynchronizer都将处理后面的流程。

2.?锁实现(加锁)

简单说来,AbstractQueuedSynchronizer会把所有的请求线程构成一个CLH队列,当一个线程执行完毕(lock.unlock())时会激活自己的后继节点,但正在执行的线程并不在队列中,而那些等待执行的线程全部处于阻塞状态,经过调查线程的显式阻塞是通过调用LockSupport.park()完成,而LockSupport.park()则调用sun.misc.Unsafe.park()本地方法,再进一步,HotSpot在Linux中中通过调用pthread_mutex_lock函数把线程交给系统内核进行阻塞。

该队列如图:


java并发编程-AbstractQueuedSynchronizer加锁和好锁分析(二)

与synchronized相同的是,这也是一个虚拟队列,不存在队列实例,仅存在节点之间的前后关系。令人疑惑的是为什么采用CLH队列呢?原生的CLH队列是用于自旋锁,但Doug Lea把其改造为阻塞锁。

当有线程竞争锁时,该线程会首先尝试获得锁,这对于那些已经在队列中排队的线程来说显得不公平,这也是非公平锁的由来,与synchronized实现类似,这样会极大提高吞吐量。

如果已经存在Running线程,则新的竞争线程会被追加到队尾,具体是采用基于CAS的Lock-Free算法,因为线程并发对Tail调用CAS可能会导致其他线程CAS失败,解决办法是循环CAS直至成功。AbstractQueuedSynchronizer的实现非常精巧,令人叹为观止,不入细节难以完全领会其精髓,下面详细说明实现过程:

2.1?NonFairSync.lock

?

/** * Performs lock.  Try immediate barge, backing up to normal * acquire on failure. */final void lock() {    // 如果锁没有被任何线程锁定且加锁成功则设定当前线程为锁的拥有者    // 如果锁已被当前线程锁定,则在acquire中将状态加1并返回    if (compareAndSetState(0, 1))        setExclusiveOwnerThread(Thread.currentThread());    else        // 加锁失败,再次尝试加锁,失败则加入等待队列,禁用当前线程,直到被中断或有线程释放锁时被唤醒        acquire(1);}
?

?

??

2.2 Sync.nonfairTryAcquire

nonfairTryAcquire方法将是lock方法间接调用的第一个方法,每次请求锁时都会首先调用该方法。

/**         * Performs non-fair tryLock.  tryAcquire is         * implemented in subclasses, but both need nonfair         * try for trylock method.         */        final boolean nonfairTryAcquire(int acquires) {            final Thread current = Thread.currentThread();            int c = getState();            if (c == 0) {                // 如果锁空闲则尝试锁定,成功则设当前线程为锁拥有者                if (compareAndSetState(0, acquires)) {                    setExclusiveOwnerThread(current);                    return true;                }            }            // 若当前线程为锁拥有者则直接修改锁状态计数            else if (current == getExclusiveOwnerThread()) {                int nextc = c + acquires;                if (nextc < 0) // overflow                    throw new Error("Maximum lock count exceeded");                setState(nextc);                return true;            }            // 尝试获取失败,返回            return false;        }

该方法会首先判断当前状态,如果c==0说明没有线程正在竞争该锁,如果不c !=0 说明有线程正拥有了该锁。

1.如果发现c==0,则通过CAS设置该状态值为acquires,acquires的初始调用值为1,如果CAS设置成功,则可以预计其他任何线程调用CAS都不会再成功,也就认为当前线程得到了该锁,也作为Running线程,很显然这个Running线程并未进入等待队列。

2.如果c !=0 但发现自己已经拥有锁,只是简单地重新计算 status + acquires,并修改status值,但因为没有竞争,所以通过setStatus修改,而非CAS,也就是说这段代码实现了偏向锁的功能,并且实现的非常漂亮。每次线程重入该锁都会+1,每次unlock都会-1,但为0时释放锁。

2.3 AbstractQueuedSynchronizer.addWaiter

addWaiter方法负责把当前无法获得锁的线程包装为一个Node添加到队尾:

/**     * Creates and enqueues node for given thread and mode.     *     * @param current the thread     * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared     * @return the new node     */    private Node addWaiter(Node mode) {        Node node = new Node(Thread.currentThread(), mode);        // Try the fast path of enq; backup to full enq on failure        Node pred = tail;        if (pred != null) {            node.prev = pred;            if (compareAndSetTail(pred, node)) {                pred.next = node;                return node;            }        }        enq(node);        return node;    }

??其中参数mode是独占锁还是共享锁,默认为null,独占锁。追加到队尾的动作分两步:

    如果当前队尾已经存在(tail!=null),则使用CAS把当前线程更新为Tail如果当前Tail为null或则线程调用CAS设置队尾失败,则通过enq方法继续设置Tail

下面是enq方法:

?

/**     * Inserts node into queue, initializing if necessary. See picture above.     * @param node the node to insert     * @return node's predecessor     */    private Node enq(final Node node) {        for (;;) {            Node t = tail;            if (t == null) { // Must initialize                Node h = new Node(); // Dummy header                h.next = node;                node.prev = h;                if (compareAndSetHead(h)) {                    tail = node;                    return h;                }            }            else {                node.prev = t;                if (compareAndSetTail(t, node)) {                    t.next = node;                    return t;                }            }        }    }
?

?

该方法就是循环调用CAS,即使有高并发的场景,无限循环将会最终成功把当前线程追加到队尾(或设置队头)。总而言之,addWaiter的目的就是通过CAS把当前线程追加到队尾,并返回包装后的Node实例。

把线程要包装为Node对象的主要原因,除了用Node构造供虚拟队列外,还用Node包装了各种线程状态,这些状态被精心设计为一些数字值:

读书人网 >编程

热点推荐