读书人

hadoop功课运行部分源码

发布时间: 2012-09-08 10:48:07 作者: rapoo

hadoop作业运行部分源码
一、客户端

Map-Reduce的过程首先是由客户端提交一个任务开始的。

提交任务主要是通过JobClient.runJob(JobConf)静态函数实现的:

public static RunningJob runJob(JobConf job) throws IOException {

? //首先生成一个JobClient对象

? JobClient jc = new JobClient(job);

? ……

? //调用submitJob来提交一个任务

? running = jc.submitJob(job);

? JobID jobId = running.getID();

? ……

? while (true) {

???? //while循环中不断得到此任务的状态,并打印到客户端console中

? }

? return running;

}

其中JobClient的submitJob函数实现如下:

public RunningJob submitJob(JobConf job) throws FileNotFoundException,

??????????????????????????????? InvalidJobConfException, IOException {

? //从JobTracker得到当前任务的id

? JobID jobId = jobSubmitClient.getNewJobId();

? //准备将任务运行所需要的要素写入HDFS:

? //任务运行程序所在的jar封装成job.jar

? //任务所要处理的input split信息写入job.split

? //任务运行的配置项汇总写入job.xml

? Path submitJobDir = new Path(getSystemDir(), jobId.toString());

? Path submitJarFile = new Path(submitJobDir, "job.jar");

? Path submitSplitFile = new Path(submitJobDir, "job.split");

? //此处将-libjars命令行指定的jar上传至HDFS

? configureCommandLineOptions(job, submitJobDir, submitJarFile);

? Path submitJobFile = new Path(submitJobDir, "job.xml");

? ……

? //通过input format的格式获得相应的input split,默认类型为FileSplit

? InputSplit[] splits =

??? job.getInputFormat().getSplits(job, job.getNumMapTasks());

?

? // 生成一个写入流,将input split得信息写入job.split文件

? FSDataOutputStream out = FileSystem.create(fs,

????? submitSplitFile, new FsPermission(JOB_FILE_PERMISSION));

? try {

??? //写入job.split文件的信息包括:split文件头,split文件版本号,split的个数,接着依次写入每一个input split的信息。

??? //对于每一个input split写入:split类型名(默认FileSplit),split的大小,split的内容(对于FileSplit,写入文件名,此split在文件中的起始位置),split的location信息(即在那个DataNode上)。

??? writeSplitsFile(splits, out);

? } finally {

??? out.close();

? }

? job.set("mapred.job.split.file", submitSplitFile.toString());

? //根据split的个数设定map task的个数

? job.setNumMapTasks(splits.length);

? // 写入job的配置信息入job.xml文件??????

? out = FileSystem.create(fs, submitJobFile,

????? new FsPermission(JOB_FILE_PERMISSION));

? try {

??? job.writeXml(out);

? } finally {

??? out.close();

? }

? //真正的调用JobTracker来提交任务

? JobStatus status = jobSubmitClient.submitJob(jobId);

? ……

}

?

二、JobTracker

JobTracker作为一个单独的JVM运行,其运行的main函数主要调用有下面两部分:

调用静态函数startTracker(new JobConf())创建一个JobTracker对象 调用JobTracker.offerService()函数提供服务

在JobTracker的构造函数中,会生成一个taskScheduler成员变量,来进行Job的调度,默认为JobQueueTaskScheduler,也即按照FIFO的方式调度任务。

在offerService函数中,则调用taskScheduler.start(),在这个函数中,为JobTracker(也即taskScheduler的taskTrackerManager)注册了两个Listener:

JobQueueJobInProgressListener jobQueueJobInProgressListener用于监控job的运行状态 EagerTaskInitializationListener eagerTaskInitializationListener用于对Job进行初始化

EagerTaskInitializationListener中有一个线程JobInitThread,不断得到jobInitQueue中的JobInProgress对象,调用JobInProgress对象的initTasks函数对任务进行初始化操作。

在上一节中,客户端调用了JobTracker.submitJob函数,此函数首先生成一个JobInProgress对象,然后调用addJob函数,其中有如下的逻辑:

synchronized (jobs) {

? synchronized (taskScheduler) {

??? jobs.put(job.getProfile().getJobID(), job);

??? //对JobTracker的每一个listener都调用jobAdded函数

??? for (JobInProgressListener listener : jobInProgressListeners) {

????? listener.jobAdded(job);

??? }

? }

}

?

EagerTaskInitializationListener的jobAdded函数就是向jobInitQueue中添加一个JobInProgress对象,于是自然触发了此Job的初始化操作,由JobInProgress得initTasks函数完成:

?

public synchronized void initTasks() throws IOException {

? ……

? //从HDFS中读取job.split文件从而生成input splits

? String jobFile = profile.getJobFile();

? Path sysDir = new Path(this.jobtracker.getSystemDir());

? FileSystem fs = sysDir.getFileSystem(conf);

? DataInputStream splitFile =

??? fs.open(new Path(conf.get("mapred.job.split.file")));

? JobClient.RawSplit[] splits;

? try {

??? splits = JobClient.readSplitFile(splitFile);

? } finally {

??? splitFile.close();

? }

? //map task的个数就是input split的个数

? numMapTasks = splits.length;

? //为每个map tasks生成一个TaskInProgress来处理一个input split

? maps = new TaskInProgress[numMapTasks];

? for(int i=0; i < numMapTasks; ++i) {

??? inputLength += splits[i].getDataLength();

??? maps[i] = new TaskInProgress(jobId, jobFile,

???????????????????????????????? splits[i],

???????????????????????????????? jobtracker, conf, this, i);

? }

? //对于map task,将其放入nonRunningMapCache,是一个Map<Node, List<TaskInProgress>>,也即对于map task来讲,其将会被分配到其input split所在的Node上。nonRunningMapCache将在JobTracker向TaskTracker分配map task的时候使用。

? if (numMapTasks > 0) {
??? nonRunningMapCache = createCache(splits, maxLevel);
? }

?

? //创建reduce task

? this.reduces = new TaskInProgress[numReduceTasks];

? for (int i = 0; i < numReduceTasks; i++) {

??? reduces[i] = new TaskInProgress(jobId, jobFile,

??????????????????????????????????? numMapTasks, i,

??????????????????????????????????? jobtracker, conf, this);

??? //reduce task放入nonRunningReduces,其将在JobTracker向TaskTracker分配reduce task的时候使用。

??? nonRunningReduces.add(reduces[i]);

? }

?

? //创建两个cleanup task,一个用来清理map,一个用来清理reduce.

? cleanup = new TaskInProgress[2];

? cleanup[0] = new TaskInProgress(jobId, jobFile, splits[0],

????????? jobtracker, conf, this, numMapTasks);

? cleanup[0].setJobCleanupTask();

? cleanup[1] = new TaskInProgress(jobId, jobFile, numMapTasks,

???????????????????? numReduceTasks, jobtracker, conf, this);

? cleanup[1].setJobCleanupTask();

? //创建两个初始化 task,一个初始化map,一个初始化reduce.

? setup = new TaskInProgress[2];

? setup[0] = new TaskInProgress(jobId, jobFile, splits[0],

????????? jobtracker, conf, this, numMapTasks + 1 );

? setup[0].setJobSetupTask();

? setup[1] = new TaskInProgress(jobId, jobFile, numMapTasks,

???????????????????? numReduceTasks + 1, jobtracker, conf, this);

? setup[1].setJobSetupTask();

? tasksInited.set(true);//初始化完毕

? ……

}

?

三、TaskTracker

TaskTracker也是作为一个单独的JVM来运行的,在其main函数中,主要是调用了new TaskTracker(conf).run(),其中run函数主要调用了:

?

State offerService() throws Exception {

? long lastHeartbeat = 0;

? //TaskTracker进行是一直存在的

? while (running && !shuttingDown) {

????? ……

????? long now = System.currentTimeMillis();

????? //每隔一段时间就向JobTracker发送heartbeat

????? long waitTime = heartbeatInterval - (now - lastHeartbeat);

????? if (waitTime > 0) {

??????? synchronized(finishedCount) {

????????? if (finishedCount[0] == 0) {

??????????? finishedCount.wait(waitTime);

????????? }

????????? finishedCount[0] = 0;

??????? }

????? }

????? ……

????? //发送Heartbeat到JobTracker,得到response

????? HeartbeatResponse heartbeatResponse = transmitHeartBeat(now);

????? ……

???? //从Response中得到此TaskTracker需要做的事情

????? TaskTrackerAction[] actions = heartbeatResponse.getActions();

????? ……

????? if (actions != null){

??????? for(TaskTrackerAction action: actions) {

????????? if (action instanceof LaunchTaskAction) {

??????????? //如果是运行一个新的Task,则将Action添加到任务队列中

??????????? addToTaskQueue((LaunchTaskAction)action);

????????? } else if (action instanceof CommitTaskAction) {

??????????? CommitTaskAction commitAction = (CommitTaskAction)action;

??????????? if (!commitResponses.contains(commitAction.getTaskID())) {

????????????? commitResponses.add(commitAction.getTaskID());

??????????? }

????????? } else {

??????????? tasksToCleanup.put(action);

????????? }

??????? }

????? }

? }

? return State.NORMAL;

}

其中transmitHeartBeat主要逻辑如下:

?

private HeartbeatResponse transmitHeartBeat(long now) throws IOException {

? //每隔一段时间,在heartbeat中要返回给JobTracker一些统计信息

? boolean sendCounters;

? if (now > (previousUpdate + COUNTER_UPDATE_INTERVAL)) {

??? sendCounters = true;

??? previousUpdate = now;

? }

? else {

??? sendCounters = false;

? }

? ……

? //报告给JobTracker,此TaskTracker的当前状态

? if (status == null) {

??? synchronized (this) {

????? status = new TaskTrackerStatus(taskTrackerName, localHostname,

???????????????????????????????????? httpPort,

???????????????????????????????????? cloneAndResetRunningTaskStatuses(

?????????????????????????????????????? sendCounters),

???????????????????????????????????? failures,

???????????????????????????????????? maxCurrentMapTasks,

???????????????????????????????????? maxCurrentReduceTasks);

??? }

? }

? ……

? //当满足下面的条件的时候,此TaskTracker请求JobTracker为其分配一个新的Task来运行:

? //当前TaskTracker正在运行的map task的个数小于可以运行的map task的最大个数

? //当前TaskTracker正在运行的reduce task的个数小于可以运行的reduce task的最大个数

? boolean askForNewTask;

? long localMinSpaceStart;

? synchronized (this) {

??? askForNewTask = (status.countMapTasks() < maxCurrentMapTasks ||

???????????????????? status.countReduceTasks() < maxCurrentReduceTasks) &&

??????????????????? acceptNewTasks;

??? localMinSpaceStart = minSpaceStart;

? }

? ……

? //向JobTracker发送heartbeat,这是一个RPC调用

? HeartbeatResponse heartbeatResponse = jobClient.heartbeat(status,

??????????????????????????????????????????????????????????? justStarted, askForNewTask,

??????????????????????????????????????????????????????????? heartbeatResponseId);

? ……

? return heartbeatResponse;

}

?

四、JobTracker

当JobTracker被RPC调用来发送heartbeat的时候,JobTracker的heartbeat(TaskTrackerStatus status,boolean initialContact, boolean acceptNewTasks, short responseId)函数被调用:

?

public synchronized HeartbeatResponse heartbeat(TaskTrackerStatus status,

??????????????????????????????????????????????? boolean initialContact, boolean acceptNewTasks, short responseId)

? throws IOException {

? ……

? String trackerName = status.getTrackerName();

? ……

? short newResponseId = (short)(responseId + 1);

? ……

? HeartbeatResponse response = new HeartbeatResponse(newResponseId, null);

? List<TaskTrackerAction> actions = new ArrayList<TaskTrackerAction>();

? //如果TaskTracker向JobTracker请求一个task运行

? if (acceptNewTasks) {

??? TaskTrackerStatus taskTrackerStatus = getTaskTracker(trackerName);

??? if (taskTrackerStatus == null) {

????? LOG.warn("Unknown task tracker polling; ignoring: " + trackerName);

??? } else {

????? //setup和cleanup的task优先级最高

????? List<Task> tasks = getSetupAndCleanupTasks(taskTrackerStatus);

????? if (tasks == null ) {

??????? //任务调度器分配任务

??????? tasks = taskScheduler.assignTasks(taskTrackerStatus);

????? }

????? if (tasks != null) {

??????? for (Task task : tasks) {

????????? //将任务放入actions列表,返回给TaskTracker

????????? expireLaunchingTasks.addNewTask(task.getTaskID());

????????? actions.add(new LaunchTaskAction(task));

??????? }

????? }

??? }

? }

? ……

? int nextInterval = getNextHeartbeatInterval();

? response.setHeartbeatInterval(nextInterval);

? response.setActions(

????????????????????? actions.toArray(new TaskTrackerAction[actions.size()]));

? ……

? return response;

}

默认的任务调度器为JobQueueTaskScheduler,其assignTasks如下:

?

public synchronized List<Task> assignTasks(TaskTrackerStatus taskTracker)

??? throws IOException {

? ClusterStatus clusterStatus = taskTrackerManager.getClusterStatus();

? int numTaskTrackers = clusterStatus.getTaskTrackers();

? Collection<JobInProgress> jobQueue = jobQueueJobInProgressListener.getJobQueue();

? int maxCurrentMapTasks = taskTracker.getMaxMapTasks();

? int maxCurrentReduceTasks = taskTracker.getMaxReduceTasks();

? int numMaps = taskTracker.countMapTasks();

? int numReduces = taskTracker.countReduceTasks();

? //计算剩余的map和reduce的工作量:remaining

? int remainingReduceLoad = 0;

? int remainingMapLoad = 0;

? synchronized (jobQueue) {

??? for (JobInProgress job : jobQueue) {

????? if (job.getStatus().getRunState() == JobStatus.RUNNING) {

??????? int totalMapTasks = job.desiredMaps();

??????? int totalReduceTasks = job.desiredReduces();

??????? remainingMapLoad += (totalMapTasks - job.finishedMaps());

??????? remainingReduceLoad += (totalReduceTasks - job.finishedReduces());

????? }

??? }

? }

? //计算平均每个TaskTracker应有的工作量,remaining/numTaskTrackers是剩余的工作量除以TaskTracker的个数。

? int maxMapLoad = 0;

? int maxReduceLoad = 0;

? if (numTaskTrackers > 0) {

??? maxMapLoad = Math.min(maxCurrentMapTasks,

????????????????????????? (int) Math.ceil((double) remainingMapLoad /

????????????????????????????????????????? numTaskTrackers));

??? maxReduceLoad = Math.min(maxCurrentReduceTasks,

???????????????????????????? (int) Math.ceil((double) remainingReduceLoad

???????????????????????????????????????????? / numTaskTrackers));

? }

? ……

?

? //map优先于reduce,当TaskTracker上运行的map task数目小于平均的工作量,则向其分配map task

? if (numMaps < maxMapLoad) {

??? int totalNeededMaps = 0;

??? synchronized (jobQueue) {

????? for (JobInProgress job : jobQueue) {

??????? if (job.getStatus().getRunState() != JobStatus.RUNNING) {

????????? continue;

??????? }

??????? Task t = job.obtainNewMapTask(taskTracker, numTaskTrackers,

??????????? taskTrackerManager.getNumberOfUniqueHosts());

??????? if (t != null) {

????????? return Collections.singletonList(t);

??????? }

??????? ……

????? }

??? }

? }

? //分配完map task,再分配reduce task

? if (numReduces < maxReduceLoad) {

??? int totalNeededReduces = 0;

??? synchronized (jobQueue) {

????? for (JobInProgress job : jobQueue) {

??????? if (job.getStatus().getRunState() != JobStatus.RUNNING ||

??????????? job.numReduceTasks == 0) {

????????? continue;

??????? }

??????? Task t = job.obtainNewReduceTask(taskTracker, numTaskTrackers,

??????????? taskTrackerManager.getNumberOfUniqueHosts());

??????? if (t != null) {

????????? return Collections.singletonList(t);

??????? }

??????? ……

????? }

??? }

? }

? return null;

}

从上面的代码中我们可以知道,JobInProgress的obtainNewMapTask是用来分配map task的,其主要调用findNewMapTask,根据TaskTracker所在的Node从nonRunningMapCache中查找TaskInProgress。JobInProgress的obtainNewReduceTask是用来分配reduce task的,其主要调用findNewReduceTask,从nonRunningReduces查找TaskInProgress。

?

五、TaskTracker

在向JobTracker发送heartbeat后,返回的reponse中有分配好的任务LaunchTaskAction,将其加入队列,调用addToTaskQueue,如果是map task则放入mapLancher(类型为TaskLauncher),如果是reduce task则放入reduceLancher(类型为TaskLauncher):

private void addToTaskQueue(LaunchTaskAction action) {

? if (action.getTask().isMapTask()) {

??? mapLauncher.addToTaskQueue(action);

? } else {

??? reduceLauncher.addToTaskQueue(action);

? }

}

TaskLauncher是一个线程,其run函数从上面放入的queue中取出一个TaskInProgress,然后调用startNewTask(TaskInProgress tip)来启动一个task,其又主要调用了localizeJob(TaskInProgress tip):

?

private void localizeJob(TaskInProgress tip) throws IOException {

? //首先要做的一件事情是有关Task的文件从HDFS拷贝的TaskTracker的本地文件系统中:job.split,job.xml以及job.jar

? Path localJarFile = null;

? Task t = tip.getTask();

? JobID jobId = t.getJobID();

? Path jobFile = new Path(t.getJobFile());

? ……

? Path localJobFile = lDirAlloc.getLocalPathForWrite(

????????????????????????????????? getLocalJobDir(jobId.toString())

????????????????????????????????? + Path.SEPARATOR + "job.xml",

????????????????????????????????? jobFileSize, fConf);

? RunningJob rjob = addTaskToJob(jobId, tip);

? synchronized (rjob) {

??? if (!rjob.localized) {

????? FileSystem localFs = FileSystem.getLocal(fConf);

????? Path jobDir = localJobFile.getParent();

????? ……

????? //将job.split拷贝到本地

????? systemFS.copyToLocalFile(jobFile, localJobFile);

????? JobConf localJobConf = new JobConf(localJobFile);

????? Path workDir = lDirAlloc.getLocalPathForWrite(

?????????????????????? (getLocalJobDir(jobId.toString())

?????????????????????? + Path.SEPARATOR + "work"), fConf);

????? if (!localFs.mkdirs(workDir)) {

??????? throw new IOException("Mkdirs failed to create "

??????????????????? + workDir.toString());

????? }

????? System.setProperty("job.local.dir", workDir.toString());

????? localJobConf.set("job.local.dir", workDir.toString());

????? // copy Jar file to the local FS and unjar it.

????? String jarFile = localJobConf.getJar();

????? long jarFileSize = -1;

????? if (jarFile != null) {

??????? Path jarFilePath = new Path(jarFile);

??????? localJarFile = new Path(lDirAlloc.getLocalPathForWrite(

?????????????????????????????????? getLocalJobDir(jobId.toString())

?????????????????????????????????? + Path.SEPARATOR + "jars",

?????????????????????????????????? 5 * jarFileSize, fConf), "job.jar");

??????? if (!localFs.mkdirs(localJarFile.getParent())) {

????????? throw new IOException("Mkdirs failed to create jars directory ");

??????? }

??????? //将job.jar拷贝到本地

??????? systemFS.copyToLocalFile(jarFilePath, localJarFile);

??????? localJobConf.setJar(localJarFile.toString());

?????? //将job得configuration写成job.xml

??????? OutputStream out = localFs.create(localJobFile);

??????? try {

????????? localJobConf.writeXml(out);

??????? } finally {

????????? out.close();

??????? }

??????? // 解压缩job.jar

??????? RunJar.unJar(new File(localJarFile.toString()),

???????????????????? new File(localJarFile.getParent().toString()));

????? }

????? rjob.localized = true;

????? rjob.jobConf = localJobConf;

??? }

? }

? //真正的启动此Task

? launchTaskForJob(tip, new JobConf(rjob.jobConf));

}

当所有的task运行所需要的资源都拷贝到本地后,则调用launchTaskForJob,其又调用TaskInProgress的launchTask函数:

public synchronized void launchTask() throws IOException {

??? ……

??? //创建task运行目录

??? localizeTask(task);

??? if (this.taskStatus.getRunState() == TaskStatus.State.UNASSIGNED) {

????? this.taskStatus.setRunState(TaskStatus.State.RUNNING);

??? }

??? //创建并启动TaskRunner,对于MapTask,创建的是MapTaskRunner,对于ReduceTask,创建的是ReduceTaskRunner

??? this.runner = task.createRunner(TaskTracker.this, this);

??? this.runner.start();

??? this.taskStatus.setStartTime(System.currentTimeMillis());

}

TaskRunner是一个线程,其run函数如下:

?

public final void run() {

??? ……

??? TaskAttemptID taskid = t.getTaskID();

??? LocalDirAllocator lDirAlloc = new LocalDirAllocator("mapred.local.dir");

??? File jobCacheDir = null;

??? if (conf.getJar() != null) {

????? jobCacheDir = new File(

??????????????????????? new Path(conf.getJar()).getParent().toString());

??? }

??? File workDir = new File(lDirAlloc.getLocalPathToRead(

????????????????????????????? TaskTracker.getLocalTaskDir(

??????????????????????????????? t.getJobID().toString(),

??????????????????????????????? t.getTaskID().toString(),

??????????????????????????????? t.isTaskCleanupTask())

????????????????????????????? + Path.SEPARATOR + MRConstants.WORKDIR,

????????????????????????????? conf). toString());

??? FileSystem fileSystem;

??? Path localPath;

??? ……

??? //拼写classpath

??? String baseDir;

??? String sep = System.getProperty("path.separator");

??? StringBuffer classPath = new StringBuffer();

??? // start with same classpath as parent process

??? classPath.append(System.getProperty("java.class.path"));

??? classPath.append(sep);

??? if (!workDir.mkdirs()) {

????? if (!workDir.isDirectory()) {

??????? LOG.fatal("Mkdirs failed to create " + workDir.toString());

????? }

??? }

??? String jar = conf.getJar();

??? if (jar != null) {??????

????? // if jar exists, it into workDir

????? File[] libs = new File(jobCacheDir, "lib").listFiles();

????? if (libs != null) {

??????? for (int i = 0; i < libs.length; i++) {

????????? classPath.append(sep);??????????? // add libs from jar to classpath

????????? classPath.append(libs[i]);

??????? }

????? }

????? classPath.append(sep);

????? classPath.append(new File(jobCacheDir, "classes"));

????? classPath.append(sep);

????? classPath.append(jobCacheDir);

??? }

??? ……

??? classPath.append(sep);

??? classPath.append(workDir);

??? //拼写命令行java及其参数

??? Vector<String> vargs = new Vector<String>(8);

??? File jvm =

????? new File(new File(System.getProperty("java.home"), "bin"), "java");

??? vargs.add(jvm.toString());

??? String javaOpts = conf.get("mapred.child.java.opts", "-Xmx200m");

??? javaOpts = javaOpts.replace("@taskid@", taskid.toString());

??? String [] javaOptsSplit = javaOpts.split(" ");

??? String libraryPath = System.getProperty("java.library.path");

??? if (libraryPath == null) {

????? libraryPath = workDir.getAbsolutePath();

??? } else {

????? libraryPath += sep + workDir;

??? }

??? boolean hasUserLDPath = false;

??? for(int i=0; i<javaOptsSplit.length ;i++) {

????? if(javaOptsSplit[i].startsWith("-Djava.library.path=")) {

??????? javaOptsSplit[i] += sep + libraryPath;

??????? hasUserLDPath = true;

??????? break;

????? }

??? }

??? if(!hasUserLDPath) {

????? vargs.add("-Djava.library.path=" + libraryPath);

??? }

??? for (int i = 0; i < javaOptsSplit.length; i++) {

????? vargs.add(javaOptsSplit[i]);

??? }

??? //添加Child进程的临时文件夹

??? String tmp = conf.get("mapred.child.tmp", "./tmp");

??? Path tmpDir = new Path(tmp);

??? if (!tmpDir.isAbsolute()) {

????? tmpDir = new Path(workDir.toString(), tmp);

??? }

??? FileSystem localFs = FileSystem.getLocal(conf);

??? if (!localFs.mkdirs(tmpDir) && !localFs.getFileStatus(tmpDir).isDir()) {

????? throw new IOException("Mkdirs failed to create " + tmpDir.toString());

??? }

??? vargs.add("-Djava.io.tmpdir=" + tmpDir.toString());

??? // Add classpath.

??? vargs.add("-classpath");

??? vargs.add(classPath.toString());

??? //log文件夹

??? long logSize = TaskLog.getTaskLogLength(conf);

??? vargs.add("-Dhadoop.log.dir=" +

??????? new File(System.getProperty("hadoop.log.dir")

??????? ).getAbsolutePath());

??? vargs.add("-Dhadoop.root.logger=INFO,TLA");

??? vargs.add("-Dhadoop.tasklog.taskid=" + taskid);

??? vargs.add("-Dhadoop.tasklog.totalLogFileSize=" + logSize);

??? // 运行map task和reduce task的子进程的main class是Child

??? vargs.add(Child.class.getName());? // main of Child

??? ……

??? //运行子进程

??? jvmManager.launchJvm(this,

??????? jvmManager.constructJvmEnv(setup,vargs,stdout,stderr,logSize,

??????????? workDir, env, pidFile, conf));

}

?

六、Child

真正的map task和reduce task都是在Child进程中运行的,Child的main函数的主要逻辑如下:

?

while (true) {

? //从TaskTracker通过网络通信得到JvmTask对象

? JvmTask myTask = umbilical.getTask(jvmId);

? ……

? idleLoopCount = 0;

? task = myTask.getTask();

? taskid = task.getTaskID();

? isCleanup = task.isTaskCleanupTask();

? JobConf job = new JobConf(task.getJobFile());

? TaskRunner.setupWorkDir(job);

? numTasksToExecute = job.getNumTasksToExecutePerJvm();

? task.setConf(job);

? defaultConf.addResource(new Path(task.getJobFile()));

? ……

? //运行task

? task.run(job, umbilical);???????????? // run the task

? if (numTasksToExecute > 0 && ++numTasksExecuted == numTasksToExecute) {

??? break;

? }

}

6.1、MapTask

如果task是MapTask,则其run函数如下:

?

public void run(final JobConf job, final TaskUmbilicalProtocol umbilical)

? throws IOException {

? //用于同TaskTracker进行通信,汇报运行状况

? final Reporter reporter = getReporter(umbilical);

? startCommunicationThread(umbilical);

? initialize(job, reporter);

? ……

? //map task的输出

? int numReduceTasks = conf.getNumReduceTasks();

? MapOutputCollector collector = null;

? if (numReduceTasks > 0) {

??? collector = new MapOutputBuffer(umbilical, job, reporter);

? } else {

??? collector = new DirectMapOutputCollector(umbilical, job, reporter);

? }

? //读取input split,按照其中的信息,生成RecordReader来读取数据

instantiatedSplit = (InputSplit)

????? ReflectionUtils.newInstance(job.getClassByName(splitClass), job);

? DataInputBuffer splitBuffer = new DataInputBuffer();

? splitBuffer.reset(split.getBytes(), 0, split.getLength());

? instantiatedSplit.readFields(splitBuffer);

? if (instantiatedSplit instanceof FileSplit) {

??? FileSplit fileSplit = (FileSplit) instantiatedSplit;

??? job.set("map.input.file", fileSplit.getPath().toString());

??? job.setLong("map.input.start", fileSplit.getStart());

??? job.setLong("map.input.length", fileSplit.getLength());

? }

? RecordReader rawIn =????????????????? // open input

??? job.getInputFormat().getRecordReader(instantiatedSplit, job, reporter);

? RecordReader in = isSkipping() ?

????? new SkippingRecordReader(rawIn, getCounters(), umbilical) :

????? new TrackedRecordReader(rawIn, getCounters());

? job.setBoolean("mapred.skip.on", isSkipping());

? //对于map task,生成一个MapRunnable,默认是MapRunner

? MapRunnable runner =

??? ReflectionUtils.newInstance(job.getMapRunnerClass(), job);

? try {

??? //MapRunner的run函数就是依次读取RecordReader中的数据,然后调用Mapper的map函数进行处理。

??? runner.run(in, collector, reporter);?????

??? collector.flush();

? } finally {

??? in.close();?????????????????????????????? // close input

??? collector.close();

? }

? done(umbilical);

}

MapRunner的run函数就是依次读取RecordReader中的数据,然后调用Mapper的map函数进行处理:

public void run(RecordReader<K1, V1> input, OutputCollector<K2, V2> output,

??????????????? Reporter reporter)

? throws IOException {

? try {

??? K1 key = input.createKey();

??? V1 value = input.createValue();

??? while (input.next(key, value)) {

????? mapper.map(key, value, output, reporter);

????? if(incrProcCount) {

??????? reporter.incrCounter(SkipBadRecords.COUNTER_GROUP,

??????????? SkipBadRecords.COUNTER_MAP_PROCESSED_RECORDS, 1);

????? }

??? }

? } finally {

??? mapper.close();

? }

}

结果集全部收集到MapOutputBuffer中,其collect函数如下:

?

public synchronized void collect(K key, V value)

??? throws IOException {

? reporter.progress();

? ……

? //从此处看,此buffer是一个ring的数据结构

? final int kvnext = (kvindex + 1) % kvoffsets.length;

? spillLock.lock();

? try {

??? boolean kvfull;

??? do {

????? //在ring中,如果下一个空闲位置接上起始位置的话,则表示满了

????? kvfull = kvnext == kvstart;

????? //在ring中计算是否需要将buffer写入硬盘的阈值

????? final boolean kvsoftlimit = ((kvnext > kvend)

????????? ? kvnext - kvend > softRecordLimit

????????? : kvend - kvnext <= kvoffsets.length - softRecordLimit);

????? //如果到达阈值,则开始将buffer写入硬盘,写成spill文件。

????? //startSpill主要是notify一个背后线程SpillThread的run()函数,开始调用sortAndSpill()开始排序,合并,写入硬盘

????? if (kvstart == kvend && kvsoftlimit) {

??????? startSpill();

????? }

????? //如果buffer满了,则只能等待写入完毕

????? if (kvfull) {

????????? while (kvstart != kvend) {

??????????? reporter.progress();

??????????? spillDone.await();

????????? }

????? }

??? } while (kvfull);

? } finally {

??? spillLock.unlock();

? }

? try {

??? //如果buffer不满,则将key, value写入buffer

??? int keystart = bufindex;

??? keySerializer.serialize(key);

??? final int valstart = bufindex;

??? valSerializer.serialize(value);

??? int valend = bb.markRecord();

??? //调用设定的partitioner,根据key, value取得partition id

??? final int partition = partitioner.getPartition(key, value, partitions);

??? mapOutputRecordCounter.increment(1);

??? mapOutputByteCounter.increment(valend >= keystart

??????? ? valend - keystart

??????? : (bufvoid - keystart) + valend);

??? //将parition id以及key, value在buffer中的偏移量写入索引数组

??? int ind = kvindex * ACCTSIZE;

??? kvoffsets[kvindex] = ind;

??? kvindices[ind + PARTITION] = partition;

??? kvindices[ind + KEYSTART] = keystart;

??? kvindices[ind + VALSTART] = valstart;

??? kvindex = kvnext;

? } catch (MapBufferTooSmallException e) {

??? LOG.info("Record too large for in-memory buffer: " + e.getMessage());

??? spillSingleRecord(key, value);

??? mapOutputRecordCounter.increment(1);

??? return;

? }

}

内存buffer的格式如下:

(见几位hadoop大侠的分析http://blog.csdn.net/HEYUTAO007/archive/2010/07/10/5725379.aspx 以及http://caibinbupt.iteye.com/)

hadoop功课运行部分源码

kvoffsets是为了写入内存前排序使用的。

从上面可知,内存buffer写入硬盘spill文件的函数为sortAndSpill:

?

?

private void sortAndSpill() throws IOException {

? ……

? FSDataOutputStream out = null;

? FSDataOutputStream indexOut = null;

? IFileOutputStream indexChecksumOut = null;

? //创建硬盘上的spill文件

? Path filename = mapOutputFile.getSpillFileForWrite(getTaskID(),

????????????????????????????????? numSpills, size);

? out = rfs.create(filename);

? ……

? final int endPosition = (kvend > kvstart)

??? ? kvend

??? : kvoffsets.length + kvend;

? //按照partition的顺序对buffer中的数据进行排序

? sorter.sort(MapOutputBuffer.this, kvstart, endPosition, reporter);

? int spindex = kvstart;

? InMemValBytes value = new InMemValBytes();

? //依次一个一个parition的写入文件

? for (int i = 0; i < partitions; ++i) {

??? IFile.Writer<K, V> writer = null;

??? long segmentStart = out.getPos();

??? writer = new Writer<K, V>(job, out, keyClass, valClass, codec);

??? //如果combiner为空,则直接写入文件

??? if (null == combinerClass) {

??????? ……

??????? writer.append(key, value);

??????? ++spindex;

???? }

???? else {

??????? ……

??????? //如果combiner不为空,则先combine,调用combiner.reduce(…)函数后再写入文件

??????? combineAndSpill(kvIter, combineInputCounter);

???? }

? }

? ……

}

当map阶段结束的时候,MapOutputBuffer的flush函数会被调用,其也会调用sortAndSpill将buffer中的写入文件,然后再调用mergeParts来合并写入在硬盘上的多个spill:

?

private void mergeParts() throws IOException {

??? ……

??? //对于每一个partition

??? for (int parts = 0; parts < partitions; parts++){

????? //create the segments to be merged

????? List<Segment<K, V>> segmentList =

??????? new ArrayList<Segment<K, V>>(numSpills);

????? TaskAttemptID mapId = getTaskID();

?????? //依次从各个spill文件中收集属于当前partition的段

????? for(int i = 0; i < numSpills; i++) {

??????? final IndexRecord indexRecord =

????????? getIndexInformation(mapId, i, parts);

??????? long segmentOffset = indexRecord.startOffset;

??????? long segmentLength = indexRecord.partLength;

??????? Segment<K, V> s =

????????? new Segment<K, V>(job, rfs, filename[i], segmentOffset,

??????????????????????????? segmentLength, codec, true);

??????? segmentList.add(i, s);

????? }

????? //将属于同一个partition的段merge到一起

????? RawKeyValueIterator kvIter =

??????? Merger.merge(job, rfs,

???????????????????? keyClass, valClass,

???????????????????? segmentList, job.getInt("io.sort.factor", 100),

???????????????????? new Path(getTaskID().toString()),

???????????????????? job.getOutputKeyComparator(), reporter);

????? //写入合并后的段到文件

????? long segmentStart = finalOut.getPos();

????? Writer<K, V> writer =

????????? new Writer<K, V>(job, finalOut, keyClass, valClass, codec);

????? if (null == combinerClass || numSpills < minSpillsForCombine) {

??????? Merger.writeFile(kvIter, writer, reporter, job);

????? } else {

??????? combineCollector.setWriter(writer);

??????? combineAndSpill(kvIter, combineInputCounter);

????? }

????? ……

??? }

}

6.2、ReduceTask

ReduceTask的run函数如下:

public void run(JobConf job, final TaskUmbilicalProtocol umbilical)

? throws IOException {

? job.setBoolean("mapred.skip.on", isSkipping());

? //对于reduce,则包含三个步骤:拷贝,排序,Reduce

? if (isMapOrReduce()) {

??? copyPhase = getProgress().addPhase("copy");

??? sortPhase? = getProgress().addPhase("sort");

??? reducePhase = getProgress().addPhase("reduce");

? }

? startCommunicationThread(umbilical);

? final Reporter reporter = getReporter(umbilical);

? initialize(job, reporter);

? //copy阶段,主要使用ReduceCopier的fetchOutputs函数获得map的输出。创建多个线程MapOutputCopier,其中copyOutput进行拷贝。

? boolean isLocal = "local".equals(job.get("mapred.job.tracker", "local"));

? if (!isLocal) {

??? reduceCopier = new ReduceCopier(umbilical, job);

??? if (!reduceCopier.fetchOutputs()) {

??????? ……

??? }

? }

? copyPhase.complete();

? //sort阶段,将得到的map输出合并,直到文件数小于io.sort.factor时停止,返回一个Iterator用于访问key-value

? setPhase(TaskStatus.Phase.SORT);

? statusUpdate(umbilical);

? final FileSystem rfs = FileSystem.getLocal(job).getRaw();

? RawKeyValueIterator rIter = isLocal

??? ? Merger.merge(job, rfs, job.getMapOutputKeyClass(),

??????? job.getMapOutputValueClass(), codec, getMapFiles(rfs, true),

??????? !conf.getKeepFailedTaskFiles(), job.getInt("io.sort.factor", 100),

??????? new Path(getTaskID().toString()), job.getOutputKeyComparator(),

??????? reporter)

??? : reduceCopier.createKVIterator(job, rfs, reporter);

? mapOutputFilesOnDisk.clear();

? sortPhase.complete();

? //reduce阶段

? setPhase(TaskStatus.Phase.REDUCE);

? ……

? Reducer reducer = ReflectionUtils.newInstance(job.getReducerClass(), job);

? Class keyClass = job.getMapOutputKeyClass();

? Class valClass = job.getMapOutputValueClass();

? ReduceValuesIterator values = isSkipping() ?

???? new SkippingReduceValuesIterator(rIter,

????????? job.getOutputValueGroupingComparator(), keyClass, valClass,

????????? job, reporter, umbilical) :

????? new ReduceValuesIterator(rIter,

????? job.getOutputValueGroupingComparator(), keyClass, valClass,

????? job, reporter);

? //逐个读出key-value list,然后调用Reducer的reduce函数

? while (values.more()) {

??? reduceInputKeyCounter.increment(1);

??? reducer.reduce(values.getKey(), values, collector, reporter);

??? values.nextKey();

??? values.informReduceProgress();

? }

? reducer.close();

? out.close(reporter);

? done(umbilical);

}

?

七、总结

Map-Reduce的过程总结如下图:

hadoop功课运行部分源码

绿色通道:好文要顶关注我收藏该文与我联系

读书人网 >软件架构设计

热点推荐