读书人

hadoop及mahout装配

发布时间: 2012-10-13 11:38:17 作者: rapoo

hadoop及mahout安装

环境:虚拟机vmware7+ubuntu12.04

1,先下载需要的文件:

? ? ?【注意】:版本问题很重要

? ? ?jdk,eclipse,maven

? ? ?hadoop:http://mirror.bjtu.edu.cn/apache/hadoop/common/hadoop-1.0.3/?我其实先下载了0.2.0

? ? ?mahout:http://labs.renren.com/apache-mirror/mahout/0.7/

2,安装jdk,下载的rpm包,需要安装alien,然后用alien把rpm转换成deb,再使用dpkg安装

3,eclipse解压,我用的helios版

4,maven解压,配置环境变量:

我的/etc/profile文件最终的配置(我的文件都放在share目录下,然后share目录可以和windows共享):

export JAVA_HOME=/usr/java/jdk1.7.0_07export PATH=$JAVA_HOME/bin:$PATHexport CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jarexport HADOOP_HOME=/home/ydp/share/hadoop-1.0.3export HADOOP_CONF_DIR=$HADOOP_HOME/confexport PATH=$HADOOP_HOME/bin:$PATHexport MAHOUT_HOME=/home/ydp/share/mahout-distribution-0.7export PATH=$MAHOUT_HOME/bin:$PATHexport MAVEN_HOME=/home/ydp/share/apache-maven-3.0.4export PATH=$MAVEN_HOME/bin:$PAT

5,安装hadoop,解压1.0.3版本,配置文件:

core-site.xml

<configuration><property><name>fs.default.name</name><value>hdfs://localhost:9000</value></property><property><name>hadoop.tmp.dir</name><value>/home/ydp/tmp</value></property></configuration
?

mapred-site.xml

<configuration><property><name>mapred.job.tracker</name><value>localhost:9001</value></property></configuration
?

hdfs-site.xml

<configuration>    <property>        <name>dfs.replication</name>        <value>1</value>    </property></configuration
?

hadoop-env.sh

?

export JAVA_HOME=/usr/java/jdk1.7.0_07export HADOOP_HOME_WARN_SUPPRESS=TRU
?

6,安装mahout,解压(我就没用mvn install了,直接下了个可用的)

?

7,在eclipse中配置hadoop,

将hadoop.0.2.0下contrib/eclipse-plugin目录下的插件拷贝出来,

解压(右键解压即可),

将hadoop内的文件hadoop-common-0.21.0..jar,hadoop-hdfs-0.21.0.jar,log4j-1.2.15.jar,hadoop-mapred-0.21.0.jar拷贝到lib目录,

在插件解压后的目录打包:jar cvf?hadoop-0.21.0-eclipse-plugin ./* ;

打开jar包内(META-INF)的文件MANIFEST.MF打开,用加压后的内容覆盖这个文件里的内容,并修改其中(应该在文件末尾处)的Bundle-ClassPath: classes/,lib/hadoop-common-0.21.0..jar,lib/hadoop-hdfs-0.21.0.jar,lib/log4j-1.2.15.jar,lib/hadoop-mapred-0.21.0.jar

将修改后的问价保存,然后把新的插件jar包拷贝到eclipse/plugins目录下,重启eclipse,打开map reduce视窗,配置其中的参数和之前在hadoop.1的配置文件中一样。

8,在eclipse中运行wordcount,

package org.frame.base.hbase.hadoop;import java.io.IOException;import java.util.StringTokenizer;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.GenericOptionsParser;public class WordCount {  /**   * TokenizerMapper 继续自 Mapper<Object, Text, Text, IntWritable>   *   * [一个文件就一个map,两个文件就会有两个map]   * map[这里读入输入文件内容 以" \t\n\r\f" 进行分割,然后设置 word ==> one 的key/value对]   *   * @param Object  Input key Type:   * @param Text    Input value Type:   * @param Text    Output key Type:   * @param IntWritable Output value Type:   *   * Writable的主要特点是它使得Hadoop框架知道对一个Writable类型的对象怎样进行serialize以及deserialize.   * WritableComparable在Writable的基础上增加了compareT接口,使得Hadoop框架知道怎样对WritableComparable类型的对象进行排序。   *   * @author yangchunlong.tw   *   */  public static class TokenizerMapper       extends Mapper<Object, Text, Text, IntWritable>{    private final static IntWritable one = new IntWritable(1);    private Text word = new Text();    public void map(Object key, Text value, Context context                    ) throws IOException, InterruptedException {      StringTokenizer itr = new StringTokenizer(value.toString());      while (itr.hasMoreTokens()) {        word.set(itr.nextToken());        context.write(word, one);      }    }  }  /**   * IntSumReducer 继承自 Reducer<Text,IntWritable,Text,IntWritable>   *   * [不管几个Map,都只有一个Reduce,这是一个汇总]   * reduce[循环所有的map值,把word ==> one 的key/value对进行汇总]   *   * 这里的key为Mapper设置的word[每一个key/value都会有一次reduce]   *   * 当循环结束后,最后的确context就是最后的结果.   *   * @author yangchunlong.tw   *   */  public static class IntSumReducer       extends Reducer<Text,IntWritable,Text,IntWritable> {    private IntWritable result = new IntWritable();    public void reduce(Text key, Iterable<IntWritable> values,                       Context context                       ) throws IOException, InterruptedException {      int sum = 0;      for (IntWritable val : values) {        sum += val.get();      }      result.set(sum);      context.write(key, result);    }  }  public static void main(String[] args) throws Exception {    Configuration conf = new Configuration();    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();    /**     * 这里必须有输入/输出     */    if (otherArgs.length != 2) {      System.err.println("Usage: wordcount <in> <out>");      System.exit(2);    }    Job job = new Job(conf, "word count");    job.setJarByClass(WordCount.class);//主类    job.setMapperClass(TokenizerMapper.class);//mapper    job.setCombinerClass(IntSumReducer.class);//作业合成类    job.setReducerClass(IntSumReducer.class);//reducer    job.setOutputKeyClass(Text.class);//设置作业输出数据的关键类    job.setOutputValueClass(IntWritable.class);//设置作业输出值类    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));//文件输入    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//文件输出    System.exit(job.waitForCompletion(true) ? 0 : 1);//等待完成退出.  }}
?

新建mapreduc目录,设置运行参数hdfs://localhost:9000/user/name/test hdfs://localhost:9000/user/name/result,运行

9,在命令行运行wordcount:

安装ssh并配置无密码输入登录,

ssh-keygen-t rsa -P ?

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

hadoop namenode -format

start-all.sh

stop-all.sh

jps

echo "a a a b b" >> test

hadoop fs -put test test

hadoop fs -ls

hadoop jar example.jar wordcount test result

hadoop fs -cat result/*

10,运行mahout,mahout --help ?mahout kmeans --help

1.下载文件http://archive.ics.uci.edu/ml/databases/synthetic_control/synthetic_control.data放在$MAHOUT_HOME目录下。

2.启动Hadoop:$HADOOP_HOME/bin/start-all.sh

3.在$MAHOUT_HOME目录下创建测试目录testdata,并把数据导入到这个tastdata目录中(这里的目录的名字只能是testdata)

    $HADOOP_HOME/bin/hadoop fs -mkdir testdata

    $HADOOP_HOME/bin/hadoop fs -put ?$MAHOUT_HOME/synthetic_control.data?$MAHOUT_HOME/testdata

4.使用kmeans算法(这会运行1分钟左右)

    $HADOOP_HOME/bin/hadoop jar $MAHOUT_HOME/mahout-examples-0.5-job.jar org.apache.mahout.clustering.syntheticcontrol.kmeans.Job

5.查看结果

    $HADOOP_HOME/bin/hadoop fs -lsr output

    $HADOOP_HOME/bin/hadoop fs -get output $MAHOUT_HOME/examples

    $cd $MAHOUT_HOME/examples/output

    $ ls

    如果看到以下结果那么算法运行成功,你的安装也就成功了.

    clusteredPoints ?clusters-0 ?clusters-1 ?clusters-10 ?clusters-2 ?clusters-3 ?clusters-4

    clusters-5 ?clusters-6 ?clusters-7 ?clusters-8 ?clusters-9 ?data

?

读书人网 >互联网

热点推荐