读书人

笔考试题(2)

发布时间: 2012-11-14 10:12:18 作者: rapoo

笔试题(2)

题目:输入一个整形数组,数组里有正数也有负数。数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。求所有子数组的和的最大值。要求时间复杂度为O(n)。

例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,和最大的子数组为3, 10, -4, 7, 2,因此输出为该子数组的和18。

分析:本题最初为2005年浙江大学计算机系的考研题的最后一道程序设计题,在2006年里包括google在内的很多知名公司都把本题当作面试题。由于本题在网络中广为流传,本题也顺利成为2006年程序员面试题中经典中的经典。

如果不考虑时间复杂度,我们可以枚举出所有子数组并求出他们的和。不过非常遗憾的是,由于长度为n的数组有O(n2)个子数组;而且求一个长度为n的数组的和的时间复杂度为O(n)。因此这种思路的时间是O(n3)。

很容易理解,当我们加上一个正数时,和会增加;当我们加上一个负数时,和会减少。如果当前得到的和是个负数,那么这个和在接下来的累加中应该抛弃并重新清零,不然的话这个负数将会减少接下来的和。基于这样的思路,我们可以写出如下代码。

?

/** * @author jefferent@tom.com * * Time: 2011-7-20 下午04:13:38 */public int findSubArray(List<Integer> list){int currentSum = 0;           //记录当前累加和int greatestSum = 0;          //记录最大和int maxValue = list.get(0);                 //记录最大值,应对输入全部为负数的情况for(Integer item : list){if(item > maxValue)maxValue = item;currentSum += item;if(currentSum > greatestSum)greatestSum = currentSum;if(currentSum < 0)currentSum = 0;}return maxValue < 0 ? maxValue : greatestSum;}

?

读书人网 >编程

热点推荐