读书人

openCl-work-item的并行的了解

发布时间: 2012-11-26 11:48:50 作者: rapoo

openCl-work-item的并行的理解

最近在看OpenCL的程序,对于work-item的运行机制不是很理解。于是,自己用几个小程序直观的看了一下,主要是在用OpenMP的测试思想,输出work-item及其处理的数据结果。个人感觉这个对于我理解其运行机制很有帮助,以下是程序:

主机端程序:main.cpp

/*   项目:openCL的矩阵相乘   作者:刘荣   时间:2012.11.20*/#include <iostream>#include<time.h>#include <string> #include<math.h>#include <vector>#include <CL/cl.h>#include <fstream>using namespace std;//kernel函数std::stringconvertToString(const char *filename)//将kernel源码,即自己写的并行化的函数,转化成字符串{    size_t size;    char*  str;    std::string s;    std::fstream f(filename, (std::fstream::in | std::fstream::binary));    if(f.is_open())    {        size_t fileSize;        f.seekg(0, std::fstream::end);        size = fileSize = (size_t)f.tellg();        f.seekg(0, std::fstream::beg);        str = new char[size+1];        if(!str)        {            f.close();            std::cout << "Memory allocation failed";            return NULL;        }        f.read(str, fileSize);        f.close();        str[size] = '\0';            s = str;        delete[] str;        return s;    }    else    {        std::cout << "\nFile containg the kernel code(\".cl\") not found. Please copy the required file in the folder containg the executable.\n";        exit(1);    }    return NULL;}int main(){double start,end,time1,time2;//查询平台cl_int ciErrNum;cl_platform_id platform;ciErrNum = clGetPlatformIDs(1, &platform, NULL);if(ciErrNum != CL_SUCCESS){cout<<"获取设备失败"<<endl;return 0;}//获取设备信息cl_device_id device;cl_int   status;    cl_uint maxDims;    cl_event events[3];    size_t globalThreads[1];    size_t localThreads[1];    size_t maxWorkGroupSize;    size_t maxWorkItemSizes[3];    ////////////////////////////////////////////////////////////////////     // STEP 7 Analyzing proper workgroup size for the kernel    //          by querying device information    //    7.1 Device Info CL_DEVICE_MAX_WORK_GROUP_SIZE    //    7.2 Device Info CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS    //    7.3 Device Info CL_DEVICE_MAX_WORK_ITEM_SIZES    ////////////////////////////////////////////////////////////////////             /**    * Query device capabilities. Maximum     * work item dimensions and the maximmum    * work item sizes    */ ciErrNum = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, &device, NULL);    status = clGetDeviceInfo(        device,         CL_DEVICE_MAX_WORK_GROUP_SIZE,         sizeof(size_t),         (void*)&maxWorkGroupSize,         NULL);    if(status != CL_SUCCESS)     {          std::cout << "Error: Getting Device Info. (clGetDeviceInfo)\n";        return 0;    }        status = clGetDeviceInfo(        device,         CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS,         sizeof(cl_uint),         (void*)&maxDims,         NULL);    if(status != CL_SUCCESS)     {          std::cout << "Error: Getting Device Info. (clGetDeviceInfo)\n";        return 0;    }    status = clGetDeviceInfo(        device,         CL_DEVICE_MAX_WORK_ITEM_SIZES,         sizeof(size_t)*maxDims,        (void*)maxWorkItemSizes,        NULL);    if(status != CL_SUCCESS)     {          std::cout << "Error: Getting Device Info. (clGetDeviceInfo)\n";        return 0;    }cout<<"maxWorkItemSizes"<<maxWorkItemSizes<<endl;cout<<"maxDims"<<maxDims<<endl;cout<<"maxWorkGroupSize"<<(int)maxWorkGroupSize<<endl;//创建上下文cl_context_properties cps[3] = {CL_CONTEXT_PLATFORM, (cl_context_properties)platform, 0};cl_context ctx = clCreateContext(cps, 1, &device, NULL, NULL, &ciErrNum);if(ciErrNum != CL_SUCCESS){cout<<"创建上下文失败"<<endl;return 0;}cl_command_queue myqueue = clCreateCommandQueue(ctx,device,0,&ciErrNum);if(ciErrNum != CL_SUCCESS){cout<<"命令队列失败"<<endl;return 0;}//声明buffer,传输数据float *C = NULL; // 输出数组float *B = NULL; // 输出数组int c=10;size_t datasize = sizeof(float)*c;// 分配内存空间C = (float*)malloc(datasize);B = (float*)malloc(datasize);// 初始化输入数组cl_mem bufferC = clCreateBuffer(ctx,CL_MEM_WRITE_ONLY,c*sizeof(float),NULL,&ciErrNum);cl_mem bufferB = clCreateBuffer(ctx,CL_MEM_WRITE_ONLY,c*sizeof(float),NULL,&ciErrNum);//运行时kernel编译const char * filename  = "simpleMultiply.cl";    std::string  sourceStr = convertToString(filename);    const char * source    = sourceStr.c_str();    size_t sourceSize[]    = { strlen(source) };//直接将CL文件读到记忆体    cl_program myprog = clCreateProgramWithSource(                  ctx,                   1,                   &source,                  sourceSize,                  &ciErrNum);//cl_program myprog = clCreateProgramWithSource(ctx,1,(const char**)&programSource,NULL,&ciErrNum);if(ciErrNum != 0){cout<<"createprogram failed"<<endl;}ciErrNum = clBuildProgram(myprog,0,NULL,NULL,NULL,NULL);if(ciErrNum != 0){cout<<"clBuildProgram failed"<<endl;}cl_kernel mykernel = clCreateKernel(myprog,"vecadd",&ciErrNum);if(ciErrNum != 0){cout<<"clCreateKernel failed"<<endl;}//运行程序clSetKernelArg(mykernel,0,sizeof(cl_mem),(void*)&bufferB);clSetKernelArg(mykernel,1,sizeof(cl_mem),(void*)&bufferC);    size_t globalWorkSize[1];globalWorkSize[0] = c/2;////start = clock();ciErrNum = clEnqueueNDRangeKernel(myqueue,mykernel,1,NULL,globalWorkSize,NULL,0,NULL,&events[0]);if(ciErrNum != 0){cout<<"clEnqueueNDRangeKernel failed"<<endl;}//时间同步status = clWaitForEvents(1, &events[0]);    if(status != CL_SUCCESS)     {         std::cout <<            "Error: Waiting for kernel run to finish. \            (clWaitForEvents0)\n";        return 0;    }    cout<<"o"<<endl;   status = clReleaseEvent(events[0]);//将结果拷贝到主机端end = clock();time1=end-start;cout<<"shijian "<<time1<<endl;ciErrNum = clEnqueueReadBuffer(myqueue,bufferC,CL_TRUE,0,datasize,C,0,NULL,&events[1]);status = clWaitForEvents(1, &events[1]);    if(status != CL_SUCCESS)     {         std::cout <<            "Error: Waiting for read buffer call to finish. \            (clWaitForEvents1)n";        return 0;    }    status = clReleaseEvent(events[1]);    if(status != CL_SUCCESS)     {         std::cout <<            "Error: Release event object. \            (clReleaseEvent)\n";        return 0;    }ciErrNum = clEnqueueReadBuffer(myqueue,bufferB,CL_TRUE,0,datasize,B,0,NULL,&events[2]);status = clWaitForEvents(1, &events[2]);    if(status != CL_SUCCESS)     {         std::cout <<            "Error: Waiting for read buffer call to finish. \            (clWaitForEvents1)n";        return 0;    }    status = clReleaseEvent(events[2]);    if(status != CL_SUCCESS)     {         std::cout <<            "Error: Release event object. \            (clReleaseEvent)\n";        return 0;    }//for(int i=0; i<c/2; i++){ cout<<"work-item:"<<B[i]<<":";for(int j=0;j<2;j++){            cout<<C[i+j]<<" ";}cout<<endl;}return 0;}

kernel函数 simpleMultiply.cl

// Enter your kernel in this window__kernel                                         void vecadd(__global float* B,__global float* C)                              {                                                   int id = get_global_id(0);  // barrier(CLK_LOCAL_MEM_FENCE);     B[id] = id;     for(int i =0;i<2;i++)   {                  C[id*2+i] = i;    }                     //  barrier(CLK_LOCAL_MEM_FENCE);             };                       


运行结果:

openCl-work-item的并行的了解

从上面的结果中,可以看出每个work-item独立运行,

读书人网 >编程

热点推荐