在java代码中用weka
?
Welcome.?Learn more about what Wikispaces has to offer.
http://weka.wikispaces.com/Use+WEKA+in+your+Java+codeguest|Join|Help|Sign In

- Wiki Home
- Recent Changes
- Pages and Files
- Members
- Manage WikiHome
All pages
All tags
All files
FAQ
Not So FAQ
Troubleshooting
Mailing List????Use WEKA in your Java code?Edit
?0
??9…
Table of ContentsInstancesARFF FilePre 3.5.5 and 3.4.x3.5.5 and newerDatabaseOption handlingFilterFiltering on-the-flyBatch filteringCalling conventionsClassificationBuilding a ClassifierBatchIncrementalEvaluatingCross-validationTrain/test setStatisticsROC curves/AUCClassifying instancesClusteringBuilding a ClustererBatchIncrementalEvaluatingClustering instancesClasses to clusters evaluationAttribute selectionMeta-ClassifierFilterLow-levelNote on randomizationSee alsoExamplesLinksThe most common components you might want to use are
- Instances?- your dataFilter?- for preprocessing the dataClassifier/Clusterer?- built on the processed dataEvaluating?- how good is the classifier/clusterer?Attribute selection?- removing irrelevant attributes from your data
- Details
- Download
- 2 KB?class to automatically turn a command line into code. Especially handy if the command line contains nested classes that have their own options, such as kernels for SMO:
classifiers.functions.SMO
- will generate output like this:
// create new instance of scheme weka.classifiers.functions.SMO scheme = new weka.classifiers.functions.SMO(); // set options scheme.setOptions(weka.core.Utils.splitOptions("-C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K \"weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0\""));
Also, the?OptionTree.java
- Details
- Download
- 8 KB?tool allows you to view a nested options string, e.g., used at the command line, as a tree. This can help you spot nesting errors.
FilterA filter has two different properties:
- supervised?or?unsupervised
either takes the class attribute into account or notattribute- or?instance-based
e.g., removing a certain attribute or removing instances that meet a certain condition
Most filters implement the?OptionHandler?interface, which means you can set the options via a String array, rather than setting them each manually via?set-methods.
For example, if you want to remove the?first?attribute of a dataset, you need this filterfilters.unsupervised.attribute.Remove
with this option-R 1
If you have an?Instances?object, called?data, you can create and apply the filter like this:import weka.core.Instances; import weka.filters.Filter; import weka.filters.unsupervised.attribute.Remove; ... String[] options = new String[2]; options[0] = "-R"; // "range" options[1] = "1"; // first attribute Remove remove = new Remove(); // new instance of filter remove.setOptions(options); // set options remove.setInputFormat(data); // inform filter about dataset **AFTER** setting options Instances newData = Filter.useFilter(data, remove); // apply filter
Filtering on-the-flyThe?FilteredClassifier?meta-classifier is an easy way of filtering data on the fly. It removes the necessity of filtering the data before the classifier can be trained. Also, the data need not be passed through the trained filter again at prediction time. The following is an example of using this meta-classifier with the?Remove?filter and?J48?for getting rid of a numeric ID attribute in the data:
import weka.classifiers.meta.FilteredClassifier; import weka.classifiers.trees.J48; import weka.filters.unsupervised.attribute.Remove; ... Instances train = ... // from somewhere Instances test = ... // from somewhere // filter Remove rm = new Remove(); rm.setAttributeIndices("1"); // remove 1st attribute // classifier J48 j48 = new J48(); j48.setUnpruned(true); // using an unpruned J48 // meta-classifier FilteredClassifier fc = new FilteredClassifier(); fc.setFilter(rm); fc.setClassifier(j48); // train and make predictions fc.buildClassifier(train); for (int i = 0; i < test.numInstances(); i++) { double pred = fc.classifyInstance(test.instance(i)); System.out.print("ID: " + test.instance(i).value(0)); System.out.print(", actual: " + test.classAttribute().value((int) test.instance(i).classValue())); System.out.println(", predicted: " + test.classAttribute().value((int) pred)); }
Other handy meta-schemes in Weka:- weka.clusterers.FilteredClusterer?(since 3.5.4)weka.associations.FilteredAssociator?(since 3.5.6)
- Details
- Download
- 1 KB.
Evaluating
Cross-validationIf you only have a training set and no test you might want to evaluate the classifier by using 10 times 10-fold cross-validation. This can be easily done via the?Evaluation?class. Here we?seed?the random selection of our folds for the CV with?1. Check out the?Evaluation?class for more information about the statistics it produces.
import weka.classifiers.Evaluation; import java.util.Random; ... Evaluation eval = new Evaluation(newData); eval.crossValidateModel(tree, newData, 10, new Random(1));
Note:?The classifier (in our example?tree) should not be trained when handed over to the?crossValidateModel?method.?Why??If the classifier does not abide to the Weka convention that a classifier must be re-initialized every time the?buildClassifiermethod is called (in other words: subsequent calls to the?buildClassifier?method always return the same results), you will get inconsistent and worthless results. The?crossValidateModel?takes care of training and evaluating the classifier. (It creates a copy of the original classifier that you hand over to the?crossValidateModel?for each run of the cross-validation.)Train/test setIn case you have a dedicated test set, you can train the classifier and then evaluate it on this test set. In the following example, a J48 is instantiated, trained and then evaluated. Some statistics are printed to?stdout:
import weka.core.Instances; import weka.classifiers.Evaluation; import weka.classifiers.trees.J48; ... Instances train = ... // from somewhere Instances test = ... // from somewhere // train classifier Classifier cls = new J48(); cls.buildClassifier(train); // evaluate classifier and print some statistics Evaluation eval = new Evaluation(train); eval.evaluateModel(cls, test); System.out.println(eval.toSummaryString("\nResults\n======\n", false));
StatisticsSome methods for retrieving the results from the evaluation:
- nominal class
- correct()?- number of correctly classified instances (see also?incorrect())pctCorrect()?- percentage of correctly classified instances (see also?pctIncorrect())kappa()?- Kappa statisticsnumeric class
- correlationCoefficient()?- correlation coefficientgeneral
- meanAbsoluteError()?- the mean absolute errorrootMeanSquaredError()?- the root mean squared errorunclassified()?- number of unclassified instancespctUnclassified()?- percentage of unclassified instances
If you want to have the exact same behavior as from the command line, use this call:import weka.classifiers.trees.J48; import weka.classifiers.Evaluation; ... String[] options = new String[2]; options[0] = "-t"; options[1] = "/some/where/somefile.arff"; System.out.println(Evaluation.evaluateModel(new J48(), options));
ROC curves/AUCSince Weka 3.5.1, you can also generate ROC curves/AUC with the predictions Weka recorded during testing. You can access these predictions via the?predictions()?method of the?Evaluation?class. See the?Generating ROC curve?article for a full example of how to generate ROC curves.
Classifying instancesIn case you have an unlabeled dataset that you want to classify with your newly trained classifier, you can use the following code snippet. It loads the file?/some/where/unlabeled.arff, uses the previously built classifier?tree?to label the instances, and saves the labeled data as?/some/where/labeled.arff.
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.FileReader; import java.io.FileWriter; import weka.core.Instances; ... // load unlabeled data Instances unlabeled = new Instances( new BufferedReader( new FileReader("/some/where/unlabeled.arff")));? // set class attribute unlabeled.setClassIndex(unlabeled.numAttributes() - 1);? // create copy Instances labeled = new Instances(unlabeled);? // label instances for (int i = 0; i < unlabeled.numInstances(); i++) { double clsLabel = tree.classifyInstance(unlabeled.instance(i)); labeled.instance(i).setClassValue(clsLabel); } // save labeled data BufferedWriter writer = new BufferedWriter( new FileWriter("/some/where/labeled.arff")); writer.write(labeled.toString()); writer.newLine(); writer.flush(); writer.close();
Note on nominal classes:- If you're interested in the distribution over all the classes, use the method?distributionForInstance(Instance). This method returns a double array with the probability for each class.The returned double value from?classifyInstance?(or the index in the array returned by?distributionForInstance) is just the index for the string values in the attribute. That is, if you want the string representation for the class label returned above?clsLabel, then you can print it like this:
System.out.println(clsLabel + " -> " + unlabeled.classAttribute().value((int) clsLabel));
ClusteringClustering is similar to classification. The necessary classes can be found in this package:
clusterers
Building a Clusterer
BatchA clusterer is built in much the same way as a classifier, but the?buildClusterer(Instances)?method instead of?buildClassifier(Instances). The following code snippet shows how to build an?EM?clusterer with a maximum of?100?iterations.
import weka.clusterers.EM; ... String[] options = new String[2]; options[0] = "-I"; // max. iterations options[1] = "100"; EM clusterer = new EM(); // new instance of clusterer clusterer.setOptions(options); // set the options clusterer.buildClusterer(data); // build the clusterer
IncrementalClusterers implementing the?weka.clusterers.UpdateableClusterer?interface can be trained incrementally (available since version 3.5.4). This conserves memory, since the data doesn't have to be loaded into memory all at once. See the Javadoc for this interface to see which clusterers implement it.
The actual process of training an incremental clusterer is fairly simple:- Call?buildClusterer(Instances)?with the structure of the dataset (may or may not contain any actual data rows).Subsequently call the?updateClusterer(Instance)?method to feed the clusterer new?weka.core.Instance?objects, one by one.Call?updateFinished()?after all Instance objects have been processed, for the clusterer to perform additional computations.
Here is an example using data from a?weka.core.converters.ArffLoader?to train?weka.clusterers.Cobweb:// load data ArffLoader loader = new ArffLoader(); loader.setFile(new File("/some/where/data.arff")); Instances structure = loader.getStructure();? // train Cobweb Cobweb cw = new Cobweb(); cw.buildClusterer(structure); Instance current; while ((current = loader.getNextInstance(structure)) != null) cw.updateClusterer(current); cw.updateFinished();
A working example is?IncrementalClusterer.java
- Details
- Download
- 1 KB.
EvaluatingFor evaluating a clusterer, you can use the?ClusterEvaluation?class. In this example, the number of clusters found is written to output:
import weka.clusterers.ClusterEvaluation; import weka.clusterers.Clusterer; ... ClusterEvaluation eval = new ClusterEvaluation(); Clusterer clusterer = new EM(); // new clusterer instance, default options clusterer.buildClusterer(data); // build clusterer eval.setClusterer(clusterer); // the cluster to evaluate eval.evaluateClusterer(newData); // data to evaluate the clusterer on System.out.println("# of clusters: " + eval.getNumClusters()); // output # of clusters
Or, in the case of?density based clusters, you can cross-validate the clusterer (Note: with?MakeDensityBasedClusterer?you can turn any clusterer into a density-based one):import weka.clusterers.ClusterEvaluation; import weka.clusterers.DensityBasedClusterer; import weka.core.Instances; import java.util.Random; ... Instances data = ... // from somewhere DensityBasedClusterer clusterer = new ... // the clusterer to evaluate double logLikelyhood = ClusterEvaluation.crossValidateModel( // cross-validate clusterer, data, 10, // with 10 folds new Random(1)); // and random number generator with seed 1
Or, if you want the same behavior/print-out from command line, use this call:import weka.clusterers.EM; import weka.clusterers.ClusterEvaluation; ... String[] options = new String[2]; options[0] = "-t"; options[1] = "/some/where/somefile.arff"; System.out.println(ClusterEvaluation.evaluateClusterer(new EM(), options));
Clustering instancesThe only difference with regard to classification is the method name. Instead of?classifyInstance(Instance), it is now?clusterInstance(Instance). The method for obtaining the distribution is still the same, i.e.,distributionForInstance(Instance).
Classes to clusters evaluationIf your data contains a class attribute and you want to check how well the generated clusters fit the classes, you can perform a so-called?classes to clusters?evaluation. The Weka Explorer offers this functionality, and it's quite easy to implement. These are the necessary steps (complete source code:?
ClassesToClusters.java
- Details
- Download
- 2 KB):
- load the data and set the class attribute
= new Instances(new BufferedReader(new FileReader("/some/where/file.arff"))); data.setClassIndex(data.numAttributes() - 1);
- generate the?class-less?data to train the clusterer with
filters.unsupervised.attribute.Remove filter = new weka.filters.unsupervised.attribute.Remove(); filter.setAttributeIndices("" + (data.classIndex() + 1)); filter.setInputFormat(data); Instances dataClusterer = Filter.useFilter(data, filter);
- train the clusterer, e.g.,?EM
= new EM(); // set further options for EM, if necessary... clusterer.buildClusterer(dataClusterer);
- evaluate the clusterer with the data still containing the class attribute
= new ClusterEvaluation(); eval.setClusterer(clusterer); eval.evaluateClusterer(data);
- print the results of the evaluation to?stdout
System.out.println(eval.clusterResultsToString());
Attribute selectionThere is no real need to use the attribute selection classes directly in your own code, since there are already a meta-classifier and a filter available for applying attribute selection, but the low-level approach is still listed for the sake of completeness. The following examples all use?CfsSubsetEval?and?GreedyStepwise?(backwards). The code listed below is taken from the?
AttributeSelectionTest.java
- Details
- Download
- 3 KB.
Meta-ClassifierThe following meta-classifier performs a preprocessing step of attribute selection before the data gets presented to the base classifier (in the example here, this is?J48).
= ... // from somewhere AttributeSelectedClassifier classifier = new AttributeSelectedClassifier(); CfsSubsetEval eval = new CfsSubsetEval(); GreedyStepwise search = new GreedyStepwise(); search.setSearchBackwards(true); J48 base = new J48(); classifier.setClassifier(base); classifier.setEvaluator(eval); classifier.setSearch(search); // 10-fold cross-validation Evaluation evaluation = new Evaluation(data); evaluation.crossValidateModel(classifier, data, 10, new Random(1)); System.out.println(evaluation.toSummaryString());
FilterThe filter approach is straightforward: after setting up the filter, one just filters the data through the filter and obtains the reduced dataset.
= ... // from somewhere AttributeSelection filter = new AttributeSelection(); // package weka.filters.supervised.attribute! CfsSubsetEval eval = new CfsSubsetEval(); GreedyStepwise search = new GreedyStepwise(); search.setSearchBackwards(true); filter.setEvaluator(eval); filter.setSearch(search); filter.setInputFormat(data); // generate new data Instances newData = Filter.useFilter(data, filter); System.out.println(newData);
Low-levelIf neither the meta-classifier nor filter approach is suitable for your purposes, you can use the attribute selection classes themselves.
= ... // from somewhere AttributeSelection attsel = new AttributeSelection(); // package weka.attributeSelection! CfsSubsetEval eval = new CfsSubsetEval(); GreedyStepwise search = new GreedyStepwise(); search.setSearchBackwards(true); attsel.setEvaluator(eval); attsel.setSearch(search); attsel.SelectAttributes(data); // obtain the attribute indices that were selected int[] indices = attsel.selectedAttributes(); System.out.println(Utils.arrayToString(indices));
Note on randomizationMost machine learning schemes, like classifiers and clusterers, are susceptible to the ordering of the data. Using a different seed for randomizing the data will most likely produce a different result. For example, the Explorer, or a classifier/clusterer run from the command line, uses only a seeded?java.util.Random?number generator, whereas the?weka.core.Instances.getgetRandomNumberGenerator(int)?(which the?
WekaDemo.java
- Details
- Download
- 6 KB?uses) also takes the data into account for seeding. Unless one runs 10-fold cross-validation 10 times and averages the results, one will most likely get different results.
See also
- Weka Examples?- pointer to collection of example classesDatabases?- for more information about using databases in Weka (includes ODBC, e.g., for MS Access)weka/experiment/DatabaseUtils.props?- the database setup fileGenerating cross-validation folds (Java approach)?- in case you want to run 10-fold cross-validation manuallyGenerating classifier evaluation output manually?- if you want to generate some of the evaluation statistics output manuallyCreating Instances on-the-fly?- explains how to generate a?weka.core.Instances?object from scratchSave Instances to an ARFF File?- shows how to output a datasetUsing the Experiment API
- Details
- Download
- 6 KB?(book,?stable-3.6,?developer)
little demo class that loads data from a file, runs it through a filter and trains/evaluates a classifierClusteringDemo.java
- Details
- Download
- 2 KB?(book,?stable-3.6,?developer)
a basic example for using the clusterer APIClassesToClusters.java
- Details
- Download
- 2 KB?(book,?stable-3.6,?developer)
performs a?classes to clusters?evaluation like in the ExplorerAttributeSelectionTest.java
- Details
- Download
- 3 KB?(book,?stable-3.6,?developer)
example code for using the attribute selection APIM5PExample.java
- Details
- Download
- 4 KB?(book,?stable-3.6,?developer)
example using M5P to obtain data from database, train model, serialize it to a file, and use this serialized model to make predictions again.OptionsToCode.java
- Details
- Download
- 2 KB?(book,?stable-3.6,?developer)
turns a Weka command line for a scheme with options into Java code, correctly escaping quotes and backslashes.OptionTree.java
- Details
- Download
- 8 KB?(book,?stable-3.6,?developer)
displays nested Weka options as tree.IncrementalClassifier.java
- Details
- Download
- 1 KB?(book,?stable-3.6,?developer)
Example class for how to train an incremental classifier (in this case,?weka.classifiers.bayes.NaiveBayesUpdateable).IncrementalClusterer.java
- Details
- Download
- 1 KB?(stable-3.6,?developer)
Example class for how to train an incremental clusterer (in this case,?weka.clusterers.Cobweb).Links
- Weka API
- Book versionStable 3.6 versionDeveloper version????Help??About??Blog??Pricing??Privacy??Terms??Support??Upgrade
Portions not contributed by visitors are Copyright 2012 Tangient LLC.?
ExamplesThe following are a few sample classes for using various parts of the Weka API:
WekaDemo.java
Batch filteringOn the command line, you can enable a second input/output pair (via?-r?and?-s) with the?-b?option, in order to process the second file with the same filter setup as the first one. Necessary, if you're using attribute selection or standardization - otherwise you end up with incompatible datasets. This is done fairly easy, since one initializes the filter only once with the?setInputFormat(Instances)?method, namely with the training set, and then applies the filter subsequently to the training set?and?the test set. The following example shows how to apply the?Standardize?filter to a train and a test set.
= ... // from somewhere Instances test = ... // from somewhere Standardize filter = new Standardize(); filter.setInputFormat(train); // initializing the filter once with training set Instances newTrain = Filter.useFilter(train, filter); // configures the Filter based on train instances and returns filtered instances Instances newTest = Filter.useFilter(test, filter); // create new test set
Calling conventionsThe?setInputFormat(Instances)?method?always?has to be the last call before the filter is applied, e.g., with?Filter.useFilter(Instances,Filter).?Why??First, it is the convention for using filters and, secondly, lots of filters generate the header of the output format in the?setInputFormat(Instances)?method with the currently set options (setting otpions?after?this call doesn't have any effect any more).
ClassificationThe necessary classes can be found in this package:
classifiers
Building a Classifier
BatchA Weka classifier is rather simple to train on a given dataset. E.g., we can train an unpruned C4.5 tree algorithm on a given dataset?data. The training is done via the?buildClassifier(Instances)?method.
import weka.classifiers.trees.J48; ... String[] options = new String[1]; options[0] = "-U"; // unpruned tree J48 tree = new J48(); // new instance of tree tree.setOptions(options); // set the options tree.buildClassifier(data); // build classifier
IncrementalClassifiers implementing the?weka.classifiers.UpdateableClassifier?interface can be trained incrementally. This conserves memory, since the data doesn't have to be loaded into memory all at once. See the Javadoc of this interface to see what classifiers are implementing it.
The actual process of training an incremental classifier is fairly simple:- Call?buildClassifier(Instances)?with the structure of the dataset (may or may not contain any actual data rows).Subsequently call the?updateClassifier(Instance)?method to feed the classifier new?weka.core.Instance?objects, one by one.
Here is an example using data from a?weka.core.converters.ArffLoader?to train?weka.classifiers.bayes.NaiveBayesUpdateable:// load data ArffLoader loader = new ArffLoader(); loader.setFile(new File("/some/where/data.arff")); Instances structure = loader.getStructure(); structure.setClassIndex(structure.numAttributes() - 1);? // train NaiveBayes NaiveBayesUpdateable nb = new NaiveBayesUpdateable(); nb.buildClassifier(structure); Instance current; while ((current = loader.getNextInstance(structure)) != null) nb.updateClassifier(current);
A working example is?IncrementalClassifier.java
The following sections explain how to use them in your own code. A link to an?example class?can be found at the end of this page, under the?Links?section. The classifiers and filters always list their options in the Javadoc API (book,?stable,?developer?version) specification.
You might also want to check out the?Weka Examples?collection, containing examples for the different versions of Weka. Another, more comprehensive, source of information is the chapter?Using the API?of the Weka manual for the stable-3.6 and developer version (snapshots?and releases later than 09/08/2009).Instances
ARFF File
Pre 3.5.5 and 3.4.xReading from an?ARFF?file is straightforward:
import weka.core.Instances; import java.io.BufferedReader; import java.io.FileReader; ... BufferedReader reader = new BufferedReader( new FileReader("/some/where/data.arff")); Instances data = new Instances(reader); reader.close(); // setting class attribute data.setClassIndex(data.numAttributes() - 1);
The class index indicates the target attribute used for classification. By default, in an ARFF file, it is the last attribute, which explains why it's set to numAttributes-1.
You?must?set it if your instances are used as a parameter of a weka function (e.g.,:?weka.classifiers.Classifier.buildClassifier(data))3.5.5 and newerThe?DataSource?class is not limited to ARFF files. It can also read CSV files and other formats (basically all file formats that Weka can import via its converters).
import weka.core.converters.ConverterUtils.DataSource; ... DataSource source = new DataSource("/some/where/data.arff"); Instances data = source.getDataSet(); // setting class attribute if the data format does not provide this information // For example, the XRFF format saves the class attribute information as well if (data.classIndex() == -1) data.setClassIndex(data.numAttributes() - 1);
DatabaseReading from?Databases?is slightly more complicated, but still very easy. First, you'll have to modify your?DatabaseUtils.props?file to reflect your database connection. Suppose you want to connect to a?MySQL?server that is running on the local machine on the default port?3306. The MySQL JDBC driver is called?Connector/J. (The driver class is?org.gjt.mm.mysql.Driver.) The database where your target data resides is called?some_database. Since you're only reading, you can use the default user?nobody?without a password. Your props file must contain the following lines:
jdbcDriver=org.gjt.mm.mysql.Driver jdbcURL=jdbc:mysql://localhost:3306/some_database
Secondly, your Java code needs to look like this to load the data from the database:import weka.core.Instances; import weka.experiment.InstanceQuery; ... InstanceQuery query = new InstanceQuery(); query.setUsername("nobody"); query.setPassword(""); query.setQuery("select * from whatsoever"); // You can declare that your data set is sparse // query.setSparseData(true); Instances data = query.retrieveInstances();
Notes:- Don't forget to add the JDBC driver to your?CLASSPATH.For MS Access, you must use the JDBC-ODBC-bridge that is part of a JDK. The?Windows databases?article explains how to do this.InstanceQuery automatically converts VARCHAR database columns to NOMINAL attributes, and long TEXT database columns to STRING attributes. So if you use InstanceQuery to do text mining against text that appears in a VARCHAR column, Weka will regard such text as nominal values. Thus it will fail to tokenize and mine that text. Use the?NominalToString?or?StringToNominal?filter (package?weka.filters.unsupervised.attribute) to convert the attributes into the correct type.
Option handlingWeka schemes that implement the?weka.core.OptionHandler?interface, such as classifiers, clusterers, and filters, offer the following methods for setting and retrieving options:
- void setOptions(String[] options)String[] getOptions()There are several ways of setting the options:
- Manually creating a String array:
String[] options = new String[2]; options[0] = "-R"; options[1] = "1";
- Using a single command-line string and using the?splitOptions?method of the?weka.core.Utils?class to turn it into an array:
String[] options = weka.core.Utils.splitOptions("-R 1");
- Using the?
OptionsToCode.java