利用简单的一元线性回归分析估计软件项目开发时间
????? 至于这个公式为什么能反映出两个变量的相关性,可以去参考高等数理统计相关资料,本文不再赘述,只是顺便说一下,r的范围在-1~1之间,绝对值越大代表相关性越强,如果为正值则表示两个变量正相关,否则为负相关。知道了这个,我们这一步骤的目的就是找出候选Proxy中与y相关系数最大的作为x。
????? 不过,这数据从哪里来呢?这就要从以前做过的项目中提取了。查阅朋友所在团队最近做过的5个项目的数据资料(这里当然历史项目越多越好,不过笔者这个朋友的团队只有5个项目的记录),得到如下数据:
????? 项目工期(y):???? 424???? 267???? 90???? 331???? 160???? (人时)
????? 用例数量(x1):?? 37?????? 20?????? 6?????? 18?????? 12
????? 实体数量(x2):???15?????? 9???????? 4???????11?????? 14
????? 数据表数量(x3):?25??????18?????? 7???????16?? ????18
????? 下面就是计算各个相关系数了,计算相关系数是一项机械且乏味的活动,一般都会交由相应的工具去完成。不过您要是感兴趣,也可以自己代入上述公式手算。下图是我用Excel计算的结果:
??????图1
????? 一般来说,|r|大于0.7就有很好的相关性了,而从计算结果可以看出,用例数量x1和工期y的相关系数达到0.93,最为优秀,而数据表数量x3也达到0.83,唯有实体数量x2的相关系数仅为0.65,质量较差。因为|r(x2,y)|<0.7,所以这里首先排除掉。
????? 到了这里似乎我们可以顺利成章选择x1作为最终Proxy,但是还有一点要考虑,就是显著性。所谓显著性就是在偶然情况下得到此结果的概率,如果显著性不足,说明这个结果不可靠。显著性t值的计算公式如下:
????? 因为n=5,这里自由度为3,然后查询t分布表,得到95%预测区间为3.182。因为一般显著性<0.05则认为显著性较好,所以如果t的值大于3.182,我们则可以接受。不过如果使用工具的话,一般可以用t检测直接得出显著性,这里我用Excel得到r(x1,y)的显著性为0.006,r(x3,y)的显著性为0.007(如图2所示),都远小于0.05,显著性均非常好。所以根据择优录取原则,我们选择x1:需求文档中用例数量作为预测Proxy。
图2
得到x的值
????? 在上文中,我们通过相关性和显著性分析,最终决定使用需求文档中的用例数量作为x。下面就是要确定x的值,这个不必多说,直接从需求文档中得到相应的数量即可。
确定相关函数f
????? 知道了x的值,下面就是要确定相关函数了。这一步是最艰难也是最有技术性的,因为相关函数不但和数理因素相关,还与开发团队、团队中的人以及管理方法有关。如果人员变动很大或管理方法做了很大的调整,历史数据可能就不具备参考价值了。不过如果团队的开发水平和管理方法没有重大变动,这个函数还是相对稳定的。
????? 在函数选型上,一般会选择线性函数,当然我个人对此是十分怀疑的,但是这里为了简单起见,我们姑且照例使用线性函数作为预测模型。这样可以建立一元线性回归模型如下:
????? 这个函数并不是简单的线性函数,而是包含了一个随机变量ε,这是一个服从正态分布的随机变量。上述模型的直观意义可以如下描述:a代表与x即用例数量无关的起始时间,b代表每一个用例所耗费的平均时间,而ε代表开发中的不确定性。在不同的团队中或不同的管理方法下,a,b和ε都是不一样的,但是当团队和管理方法相对稳定,可以认为a,b和ε是可通过历史数据估计的。而因为ε的期望为0,所以只要给出a和b的合理估计,就可以得到y的一个无偏估计。
????? 下面我们估计a和b的值。估计方法有很多,如曲线拟合法或最小二乘法。这里我们采用最小二乘法进行估计。
????? 最小二乘法估计的基本原理如下:
????? 求极值可以使用微积分中的求极值方法,首先令Q(a,b)对a和b分别求偏导,并令偏导为零,得如下方程组:
????? 经过一系列计算和推导,最终可得到:
????? 将以前的历史数据代入上述方程,就可以得到a和b的最小二乘估计。同样,这种机械而乏味的计算一般交由工具去完成。我用Excel得到a和b的估计分别为56.251和10.653。Excel分析结果如图3所示:
图3
????? 根据估计结果,我们可以得出相关函数为y=56.251+10.653。我们还可以证明,这个估计是一致最小方差无偏估计,证明过程从略。
????? 现在我们不但得到了相关函数,还得到了如下有用的数据结果:这个团队在目前的管理模式下,开发一个项目平均准备时间为56.251人时,而平均每个用例开发耗时为10.653人时。
得出y
????? 有了上面的结果,我们可以很轻易得出新项目的计划工时。例如新项目有50个用例,代入可以得到y=56.251+10.653*50=588.901,约为589个人时,再假设团队中有3个开发人员,平均每周工作五天,每天工作8小时,就可以得到项目大约需要开发24.54个人日,开发周期约为5周。
后面的话
????? 至此我们已经完成了利用一元线性回归模型对软件工期的估计。但是不得不承认,这个估计方法存在很多缺陷,如估计变量单一以及估计模型过于简单等等。实验证明,这种一元线性模型对中小型项目相对有效,如果团队比较大并且项目十分复杂,估计效果就不理想了。不过这篇文章给出了一种思路,就是如何利用数理统计模型以及历史经验数据来估计新项目的工期。对于文中的具体方法则可以进行诸多扩展,例如使用多个估计代理进行多元回归分析、细化估计方法等等。例如PSP中就给出一种非常精细的PROBE估计法,有兴趣的朋友可以参考。另外,除了求得估计值,还可以给出估值置信区间,甚至使用蒙特卡洛模拟技术进行更复杂的分析,都可以得到更理想的估值。但是其核心思想与本文是相通的。