读书人

linux过程解析-进程的创建

发布时间: 2013-09-05 16:02:07 作者: rapoo

linux进程解析--进程的创建

通常我们在代码中调用fork()来创建一个进程或者调用pthread_create()来创建一个线程,创建一个进程需要为其分配内存资源,文件资源,时间片资源等,在这里来描述一下linux进程的创建过程及写时复制技术。

一写时复制

子进程和父进程通常拥有着不同的进程内存空间(线程除外),传统的unix在创建子进程后,会复制父进程的地址空间的所有内容,这就十分的低效,因为经常子进程会立即执行exec操作,创建一个崭新的内存空间,另外像进程代码段这样的内存,父子进程只是读,而没有写操作,完全可以共享,而不用去复制,这样会节省大量的时间。
写时复制机制就是在这个背景下产生的,子进程创建后,不会去复制所有的父进程的内存空间物理内存,通常只复制下页全局目录,并把所有父进程的物理页设置为写保护,这样当父子进程中有一个对物理页进行写时,就会触发写保护异常,就复制一下对应的物理页,加入到对应的页表中即可。
二clone(), fork(),vfork()
fork(),vfork()系统调用都是通过clone()函数来实现的,clone()函数介绍如下:
函数原型:
int clone(int (*fn)(void *), void *child_stack, int flags, void *arg);


这里fn是函数指针,我们知道进程的4要素,这个就是指向程序的指针,就是所谓的“剧本", child_stack明显是为子进程分配用户态堆栈空间,flags就是标志用来描述你需要从父进程继承那些资源, arg就是传给子进程的参数)。下面是flags可以取的值:


标志 含义


CLONE_PARENT 创建的子进程的父进程是调用者的父进程,新进程与创建它的进程成了“兄弟”而不是“父子”
CLONE_FS 子进程与父进程共享相同的文件系统,包括root、当前目录、umask
CLONE_FILES 子进程与父进程共享相同的文件描述符(file descriptor)表
CLONE_NEWNS 在新的namespace启动子进程,namespace描述了进程的文件hierarchy
CLONE_SIGHAND 子进程与父进程共享相同的信号处理(signal handler)表
CLONE_PTRACE 若父进程被trace,子进程也被trace
CLONE_VFORK 父进程被挂起,直至子进程释放虚拟内存资源
CLONE_VM 子进程与父进程运行于相同的内存空间
CLONE_PID 子进程在创建时PID与父进程一致
CLONE_THREAD Linux 2.4中增加以支持POSIX线程标准,子进程与父进程共享相同的线程群


下面的例子是创建一个线程(子进程共享了父进程虚存空间,没有自己独立的虚存空间不能称其为进程)。父进程被挂起当子线程释放虚存资源后再继续执行。


实现clone()系统调用的服务例程是sys_clone(),sys_clone()例程并没有fn和arg参数,clone()函数会把fn放在子进程堆栈的某个位置,该位置就是封装函数本身返回地址的存放位置,arg指针放在fn堆栈的下面,当封装函数结束时,cpu取出fn,执行fn(arg).
与系统调用clone功能相似的系统调用有fork,但fork事实上只是clone的功能的一部分,clone与fork的主要区别在于传递了几个参数,而当中最重要的参数就是conle_flags,下表是系统定义的几个clone_flags标志,同时child_stack传递的也是父进程的用户态堆栈,由于写时复制,会在父子进程对堆栈进行操作时进行复制。
标志 Value 含义
CLONE_VM 0x00000100 置起此标志在进程间共享地址空间
CLONE_FS 0x00000200 置起此标志在进程间共享文件系统信息
CLONE_FILES 0x00000400 置起此标志在进程间共享打开的文件
CLONE_SIGHAND 0x00000800 置起此标志在进程间共享信号处理程序


三sys_clone()服务例程源码解析

fork(),vfork(),clone()三个系统调用最后都是使用sys_clone()服务例程来完成了系统调用,sys_clone()服务例程会去调用do_fork()函数,主要的处理流程就在do_fork()中。

3.1do_fork()

int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,unsigned long unused,struct task_struct * p, struct pt_regs * regs){struct pt_regs * childregs;struct task_struct *tsk;int err;    //得到子进程内核栈的栈底childregs = ((struct pt_regs *) (THREAD_SIZE + (unsigned long) p->thread_info)) - 1;    //将保存在父进程内核栈中的寄存器内容复制到子进程的内核栈     *childregs = *regs;    //将子进程的eax寄存器值设为0,eax表示返回值childregs->eax = 0;    //childregs->esp中存放的是子进程用户态的栈地址childregs->esp = esp;    //thread.esp存放的是内核态的栈顶地址p->thread.esp = (unsigned long) childregs;p->thread.esp0 = (unsigned long) (childregs+1);    //thread.eip存放的是内核态的返回地址p->thread.eip = (unsigned long) ret_from_fork;savesegment(fs,p->thread.fs);savesegment(gs,p->thread.gs);tsk = current;    //copy父进程的io权限位图if (unlikely(NULL != tsk->thread.io_bitmap_ptr)) {p->thread.io_bitmap_ptr = kmalloc(IO_BITMAP_BYTES, GFP_KERNEL);if (!p->thread.io_bitmap_ptr) {p->thread.io_bitmap_max = 0;return -ENOMEM;}memcpy(p->thread.io_bitmap_ptr, tsk->thread.io_bitmap_ptr,IO_BITMAP_BYTES);}    ::return err;}

四do_fork()之后发生了什么
现在我们有了完整的可以运行的进程,但还有对其进行调度,在以后的进程切换时,会对其进行完善,将子进程描述符中thread字段的值放入几个寄存器中,主要是将thread.esp放入esp寄存器中,把ret_from_fork()函数的地址放入到eip寄存器中,(参看上面的copy_thread函数)然后进程切换后会去执行ret_from_fork()函数,ret_form_fork()回去调用schedule_tail()函数,用存放在内核栈中的值装载所有的寄存器,并强迫cpu返回用户态。系统调用的返回值存放在了eax中,返回给子进程的是0,父进程的是子进程的id号。

读书人网 >UNIXLINUX

热点推荐