读书人

hdu 4273 Rescue(三维空间凸包重心)

发布时间: 2013-09-28 10:01:20 作者: rapoo

hdu 4273 Rescue(三维凸包重心)

裸的三维凸包重心到表面的最近距离。

#include<algorithm>#include<iostream>#include<cstring>#include<fstream>#include<sstream>#include<vector>#include<string>#include<cstdio>#include<bitset>#include<queue>#include<stack>#include<cmath>#include<map>#include<set>#define FF(i, a, b) for(int i=a; i<b; i++)#define FD(i, a, b) for(int i=a; i>=b; i--)#define REP(i, n) for(int i=0; i<n; i++)#define CLR(a, b) memset(a, b, sizeof(a))#define debug puts("**debug**")#define LL long long#define PB push_back#define MP make_pair#define eps 1e-8using namespace std;int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; }struct Point3 {  double x, y, z;  Point3(double x=0, double y=0, double z=0):x(x),y(y),z(z) { }};typedef Point3 Vector3;Vector3 operator + (const Vector3& A, const Vector3& B) { return Vector3(A.x+B.x, A.y+B.y, A.z+B.z); }Vector3 operator - (const Point3& A, const Point3& B) { return Vector3(A.x-B.x, A.y-B.y, A.z-B.z); }Vector3 operator * (const Vector3& A, double p) { return Vector3(A.x*p, A.y*p, A.z*p); }Vector3 operator / (const Vector3& A, double p) { return Vector3(A.x/p, A.y/p, A.z/p); }bool operator == (const Point3& a, const Point3& b) {  return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0 && dcmp(a.z-b.z) == 0;}Point3 read_point3() {  Point3 p;  scanf("%lf%lf%lf", &p.x, &p.y, &p.z);  return p;}double Dot(const Vector3& A, const Vector3& B) { return A.x*B.x + A.y*B.y + A.z*B.z; }double Length(const Vector3& A) { return sqrt(Dot(A, A)); }double Angle(const Vector3& A, const Vector3& B) { return acos(Dot(A, B) / Length(A) / Length(B)); }Vector3 Cross(const Vector3& A, const Vector3& B) { return Vector3(A.y*B.z - A.z*B.y, A.z*B.x - A.x*B.z, A.x*B.y - A.y*B.x); }double Area2(const Point3& A, const Point3& B, const Point3& C) { return Length(Cross(B-A, C-A)); }double Volume6(const Point3& A, const Point3& B, const Point3& C, const Point3& D) { return Dot(D-A, Cross(B-A, C-A)); }Point3 Centroid(const Point3& A, const Point3& B, const Point3& C, const Point3& D) { return (A + B + C + D)/4.0; }double rand01() { return rand() / (double)RAND_MAX; }double randeps() { return (rand01() - 0.5) * eps; }Point3 add_noise(const Point3& p) {  return Point3(p.x + randeps(), p.y + randeps(), p.z + randeps());}struct Face {  int v[3];  Face(int a, int b, int c) { v[0] = a; v[1] = b; v[2] = c; }  Vector3 Normal(const vector<Point3>& P) const {    return Cross(P[v[1]]-P[v[0]], P[v[2]]-P[v[0]]);  }  // f是否能看见P[i]  int CanSee(const vector<Point3>& P, int i) const {    return Dot(P[i]-P[v[0]], Normal(P)) > 0;  }};// 增量法求三维凸包// 注意:没有考虑各种特殊情况(如四点共面)。实践中,请在调用前对输入点进行微小扰动vector<Face> CH3D(const vector<Point3>& P) {  int n = P.size();  vector<vector<int> > vis(n);  for(int i = 0; i < n; i++) vis[i].resize(n);  vector<Face> cur;  cur.push_back(Face(0, 1, 2)); // 由于已经进行扰动,前三个点不共线  cur.push_back(Face(2, 1, 0));  for(int i = 3; i < n; i++) {    vector<Face> next;    // 计算每条边的“左面”的可见性    for(int j = 0; j < cur.size(); j++) {      Face& f = cur[j];      int res = f.CanSee(P, i);      if(!res) next.push_back(f);      for(int k = 0; k < 3; k++) vis[f.v[k]][f.v[(k+1)%3]] = res;    }    for(int j = 0; j < cur.size(); j++)      for(int k = 0; k < 3; k++) {        int a = cur[j].v[k], b = cur[j].v[(k+1)%3];        if(vis[a][b] != vis[b][a] && vis[a][b]) // (a,b)是分界线,左边对P[i]可见          next.push_back(Face(a, b, i));      }    cur = next;  }  return cur;}struct ConvexPolyhedron {  int n;  vector<Point3> P, P2;  vector<Face> faces;  bool read() {    if(scanf("%d", &n) != 1) return false;    P.resize(n);    P2.resize(n);    for(int i = 0; i < n; i++) { P[i] = read_point3(); P2[i] = add_noise(P[i]); }    faces = CH3D(P2);    return true;  }  Point3 centroid() {    Point3 C = P[0];    double totv = 0;    Point3 tot(0,0,0);    for(int i = 0; i < faces.size(); i++) {      Point3 p1 = P[faces[i].v[0]], p2 = P[faces[i].v[1]], p3 = P[faces[i].v[2]];      double v = -Volume6(p1, p2, p3, C);      totv += v;      tot = tot + Centroid(p1, p2, p3, C)*v;    }    return tot / totv;  }  double mindist(Point3 C) {    double ans = 1e30;    for(int i = 0; i < faces.size(); i++) {      Point3 p1 = P[faces[i].v[0]], p2 = P[faces[i].v[1]], p3 = P[faces[i].v[2]];      ans = min(ans, fabs(-Volume6(p1, p2, p3, C) / Area2(p1, p2, p3)));    }    return ans;  }}P1;int main(){  int n, m;  ConvexPolyhedron P1, P2;  while(P1.read()) {    Point3 C1 = P1.centroid();    double d1 = P1.mindist(C1);    printf("%.3f\n", d1);  }  return 0;}


读书人网 >其他相关

热点推荐