读书人

单流最短路径Bellman-Ford和Dijkstr

发布时间: 2013-10-08 17:08:58 作者: rapoo

单源最短路径—Bellman-Ford和Dijkstra算法

Bellman-Ford算法:通过对边进行松弛操作来渐近地降低从源结点s到每个结点v的最短路径的估计值v.d,直到该估计值与实际的最短路径权重相同时为止。该算法主要是基于下面的定理:

设G=(V,E)是一带权重的源结点为s的有向图,其权重函数为W,假设图G中不包含从源结点s可到达的权重为负值的环路,在对图中的每条边执行|V|-1次松弛之后,对于所有从源结点s可到达的结点v,都有单流最短路径—Bellman-Ford和Dijkstra算法

证明:s可到达结点v并且图中没有权重为负值的环路,所以总能找到一条路径p=(v0,v1,...,vk)是从s到v结点的最短路径,这里v0=s,vk=v。因为最短路径都是简单路径,p最多包含|V|-1条边,即k<=|V|-1。由于v0=s,所以单流最短路径—Bellman-Ford和Dijkstra算法,当对所有的边进行第1次松弛后,必有单流最短路径—Bellman-Ford和Dijkstra算法,依次类推,进行第k次松弛后,必有单流最短路径—Bellman-Ford和Dijkstra算法,最后可得进行|V|-1次松弛后有单流最短路径—Bellman-Ford和Dijkstra算法

下面证明为什么当单流最短路径—Bellman-Ford和Dijkstra算法,对边单流最短路径—Bellman-Ford和Dijkstra算法松弛后,有:单流最短路径—Bellman-Ford和Dijkstra算法

由于s->...->vi-1->vi是一条最短路径,在对边单流最短路径—Bellman-Ford和Dijkstra算法松弛后,

有:单流最短路径—Bellman-Ford和Dijkstra算法(这个是松弛的定义)。

单流最短路径—Bellman-Ford和Dijkstra算法

单流最短路径—Bellman-Ford和Dijkstra算法

又由于单流最短路径—Bellman-Ford和Dijkstra算法,所以:单流最短路径—Bellman-Ford和Dijkstra算法

Bellman-Ford算法的实现是对图中的每条边进行|V|-1次松弛。

Dijkstra算法:将图中的结点分为两类,一类是结点集合S,从源结点s到集合中每个结点之间的最短路径已经被找到。另一类集合是V-S。算法重复地从集合V-S中选择最短路径估计最小的结点u,然后将u加入到集合S,然后对所有从u出发的边进行松弛。在进行|V|次重复操作后,其中每条边经历过一次松弛,对于所有的结点v,都有单流最短路径—Bellman-Ford和Dijkstra算法。关键点是证明:该算法在每次选择结点u来加入到集合S时,有单流最短路径—Bellman-Ford和Dijkstra算法。证明过程省略,可以参考《算法导论》的证明过程。

下面给两种算法的出程序:在Dijkstra算法中,通过结点的颜色color来区分结点是属于S集合还是V-S集合,黑色时是S集合中,白色时是V-S集合中

Minpath.h

#pragma once#include<iostream>#include<string>#include<vector>using namespace std;template<typename Comparable>struct Edge;template<typename Comparable>struct Node{Comparable element;//结点的元素vector<Edge<Comparable>*>Side;//该结点所在的边Node<Comparable>* T;    //最短路径中该结点的父亲int dis;                               //距离string color;            //在Dijkstra算法中用于标记该结点是否被选中Node(Comparable e,Node<Comparable>* f,int d,string c){element=e;T=f;dis=d;color=c;}};template<typename Comparable>struct Edge{Node<Comparable>* N1;  //边的两端结点,N1是N2结点的父结点Node<Comparable>* N2;string color;           int weight;Edge(Node<Comparable>* n1,Node<Comparable>* n2,int w):N1(n1),N2(n2),weight(w){}};template<typename Comparable>class graph{public:void insert(Comparable *a,int *matrix,int *w,int n);//a:图中个结点的元素;matrix:邻接矩阵void Bellman(Comparable x);void Dijkstra(Comparable x);void MinPath(Comparable x);private:vector<Node<Comparable>*> root;vector<Edge<Comparable>*> side;Node<Comparable>* find(Comparable x);Node<Comparable>* find();void relax(Edge<Comparable>* edge);            //松弛void MinPath(Node<Comparable>* s);};

Minpath.cpp

#include "stdafx.h"#include"Minpath.h"#include<iostream>#include<string>#include<vector>using namespace std;template<typename Comparable>void graph<Comparable>::insert(Comparable *a,int *matrix,int *w,int n){for(int i=0;i<n;i++){Node<Comparable>* node=new Node<Comparable>(a[i],NULL,10000,"WHITE");root.push_back(node);}Node<Comparable>* node=NULL;Node<Comparable>* temp=NULL;int k=0;for(int i=0;i<n;i++){node=root[i];for(int j=0;j<n;j++){if(matrix[n*i+j]!=0){temp=root[j];Edge<Comparable>* edge=new Edge<Comparable>(node,temp,w[k]);k=k+1;side.push_back(edge);node->Side.push_back(edge);}}}}//找出元素是x的结点template<typename Comparable>Node<Comparable>* graph<Comparable>::find(Comparable x){int n=root.size();Node<Comparable>* temp=NULL;for(int i=0;i<n;i++){if(root[i]->element==x)temp=root[i];}return temp;}//边的松弛template<typename Comparable>void graph<Comparable>::relax(Edge<Comparable>* edge){if(edge->N2->dis>edge->N1->dis+edge->weight){edge->N2->dis=edge->N1->dis+edge->weight;edge->N2->T=edge->N1;}}//Bellman-Ford算法:对图中的边进行|v|-1次的松弛template<typename Comparable>void graph<Comparable>::Bellman(Comparable x){Node<Comparable>* s=find(x);bool flag=true;if(s==NULL)return;int n=root.size();int en=side.size();Edge<Comparable>* edge=NULL;s->dis=0;                  //选择s为源结点,并初始化其距离为0//对图中的每个边进行|V|-1次的松弛for(int i=0;i<n-1;i++){for(int j=0;j<en;j++){edge=side[j];relax(edge);            //松弛}}for(int i=0;i<en;i++){edge=side[i];if(edge->N2->dis>edge->N1->dis+edge->weight)flag=false;}if(flag==false)cout<<"图中包含权重为负值的环路"<<endl;else{s->T=NULL;}}//Dijkstra算法template<typename Comparable>void graph<Comparable>::Dijkstra(Comparable x){Node<Comparable>* s=find(x);Node<Comparable>* source=s;if(s==NULL)return;Edge<Comparable>* edge=NULL;Node<Comparable>* temp=new Node<Comparable>(s->element,NULL,10000,"WHITE");Node<Comparable>* t=temp;int n=root.size();s->dis=0;s->color="BLACK";   //初始化源结点for(int i=0;i<n;i++){int en=s->Side.size();for(int j=0;j<en;j++) //对s结点的所有的边进行一次松弛{edge=s->Side[j];relax(edge);}   s=find();   s->color="BLACK";}source->T=NULL;}template<typename Comparable>Node<Comparable>* graph<Comparable>::find(){Node<Comparable>* s=new Node<Comparable>(root[0]->element,NULL,10000,"WHITE");int n=root.size();for(int i=0;i<n;i++){if((root[i]->color=="WHITE")&&(root[i]->dis<s->dis))s=root[i];}return s;}//找出某结点的最短路径并输出template<typename Comparable>void graph<Comparable>::MinPath(Comparable x){Node<Comparable>* s=find(x);cout<<"最短路径为:"<<endl;MinPath(s->T);cout<<"("<<s->element<<","<<s->dis<<")"<<endl;}template<typename Comparable>void graph<Comparable>::MinPath(Node<Comparable>* s){if(s!=NULL){MinPath(s->T);cout<<"("<<s->element<<","<<s->dis<<")"<<"—>";}elsereturn;}


Algorithm-graph3.cpp

// Algorithm-graph3.cpp : 定义控制台应用程序的入口点。//主要是图中的最短路径问题:Bellman-Ford算法和Dijkstra算法#include "stdafx.h"#include"Minpath.h"#include"Minpath.cpp"#include<iostream>#include<string>#include<vector>using namespace std;#include<iostream>int _tmain(int argc, _TCHAR* argv[]){graph<string> g;////Bellman-Ford算法/*int n=5;int matrix[25]={0,1,0,0,1,            0,0,1,1,1,0,1,0,0,0,1,0,1,0,0,0,0,1,1,0};string a[5]={"s","t","x","z","y"};int w[10]={6,7,5,-4,8,-2,2,7,-3,9};*/ //Dijkstra算法int n=5;int matrix[25]={0,1,0,0,1,            0,0,1,0,1,0,0,0,1,0,1,0,1,0,0,0,1,1,1,0};string a[5]={"s","t","x","z","y"};int w[10]={10,5,1,2,4,7,6,3,9,2};g.insert(a,matrix,w,n);//g.Bellman("s");g.Dijkstra("s");   //选择结点元素为s的作为源结点g.MinPath("x");    //输出结点元素是x的最短路径return 0;}



读书人网 >编程

热点推荐