POJ 3384 Feng Shui 半平面交
题目给出两个圆和一个多边形
问是否能让两个圆在多边形内。
并且覆盖的面积最大
圆的半径为r,我们则让多边形的每条边都往内部退r距离。
然后求半平面交得出的点集中,最远的两个点则是两圆的圆心即可
#include <iostream>#include <cstdio>#include <cstring>#include <string>#include <algorithm>#include <cstdlib>#include <cmath>#include <map>#include <sstream>#include <queue>#include <vector>#define MAXN 111111#define MAXM 211111#define PI acos(-1.0)#define eps 1e-8#define INF 1000000001using namespace std;int dblcmp(double d){ if (fabs(d) < eps) return 0; return d > eps ? 1 : -1;}struct point{ double x, y; point(){} point(double _x, double _y): x(_x), y(_y){}; void input() { scanf("%lf%lf",&x, &y); } double dot(point p) { return x * p.x + y * p.y; } double distance(point p) { return hypot(x - p.x, y - p.y); } point sub(point p) { return point(x - p.x, y - p.y); } double det(point p) { return x * p.y - y * p.x; } bool operator == (point a)const { return dblcmp(a.x - x) == 0 && dblcmp(a.y - y) == 0; } bool operator < (point a)const { return dblcmp(a.x - x) == 0 ? dblcmp(y - a.y) < 0 : x < a.x; }}p[MAXN];struct line{ point a,b; line(){} line(point _a,point _b) { a=_a; b=_b; } bool parallel(line v) { return dblcmp(b.sub(a).det(v.b.sub(v.a))) == 0; } point crosspoint(line v) { double a1 = v.b.sub(v.a).det(a.sub(v.a)); double a2 = v.b.sub(v.a).det(b.sub(v.a)); return point((a.x * a2 - b.x * a1) / (a2 - a1), (a.y * a2 - b.y * a1) / (a2 - a1)); } bool operator == (line v)const { return (a == v.a) && (b == v.b); }};struct halfplane:public line{double angle;halfplane(){}//表示向量 a->b逆时针(左侧)的半平面halfplane(point _a, point _b){a = _a;b = _b;}halfplane(line v){a = v.a;b = v.b;}void calcangle(){angle = atan2(b.y - a.y, b.x - a.x);}bool operator <(const halfplane &b)const{return angle < b.angle;}};struct polygon{ int n; point p[MAXN]; line l[MAXN]; double area; void getline() { for (int i = 0; i < n; i++) { l[i] = line(p[i], p[(i + 1) % n]); } } void getarea() { area = 0; int a = 1, b = 2; while(b <= n - 1) { area += p[a].sub(p[0]).det(p[b].sub(p[0])); a++; b++; } area = fabs(area) / 2; }}convex;struct halfplanes{int n;halfplane hp[MAXN];point p[MAXN];int que[MAXN];int st, ed;void push(halfplane tmp){hp[n++] = tmp;}void unique(){int m = 1, i;for (i = 1; i < n;i++){if (dblcmp(hp[i].angle - hp[i - 1].angle))hp[m++] = hp[i];else if (dblcmp(hp[m - 1].b.sub(hp[m - 1].a).det(hp[i].a.sub(hp[m - 1].a)) > 0))hp[m - 1] = hp[i];}n = m;}bool halfplaneinsert(){int i;for (i = 0; i < n; i++) hp[i].calcangle();sort(hp, hp + n);unique();que[st = 0] = 0;que[ed = 1] = 1;p[1] = hp[0].crosspoint(hp[1]);for (i = 2; i < n; i++){while (st < ed && dblcmp((hp[i].b.sub(hp[i].a).det(p[ed].sub(hp[i].a)))) < 0) ed--;while (st < ed && dblcmp((hp[i].b.sub(hp[i].a).det(p[st + 1].sub(hp[i].a)))) < 0) st++;que[++ed] = i;if (hp[i].parallel(hp[que[ed - 1]])) return false;p[ed] = hp[i].crosspoint(hp[que[ed - 1]]);}while (st < ed && dblcmp(hp[que[st]].b.sub(hp[que[st]].a).det(p[ed].sub(hp[que[st]].a))) < 0) ed--;while (st < ed && dblcmp(hp[que[ed]].b.sub(hp[que[ed]].a).det(p[st + 1].sub(hp[que[ed]].a))) < 0) st++;if (st + 1 >= ed)return false;return true;}void getconvex(polygon &con){p[st] = hp[que[st]].crosspoint(hp[que[ed]]);con.n = ed - st + 1;int j = st, i = 0;for (; j <= ed; i++, j++){con.p[i] = p[j];}}}h;int T;int n;line getmove(point a, point b, double mid){ double x = a.x - b.x; double y = a.y - b.y; double L = a.distance(b); point ta = point(mid * y / L + a.x, a.y - mid * x / L); point tb = point(mid * y / L + b.x, b.y - mid * x / L); return line(ta, tb);}double r;int main(){ int cas = 0; while(scanf("%d%lf", &n, &r) != EOF) { for(int i = 0; i < n; i++) p[i].input(); h.n = 0; for(int i = 0; i < n; i++) { line tmp = getmove(p[(i + 1) % n], p[i], r); h.push(halfplane(tmp)); } h.halfplaneinsert(); h.getconvex(convex); int id1 = 0, id2 = 0; double mx = 0; for(int i = 0; i < convex.n; i++) for(int j = i + 1; j < convex.n; j++) { double len = convex.p[i].distance(convex.p[j]); if(dblcmp(len - mx) > 0) id1 = i, id2 = j, mx = len; } printf("%f %f %f %f\n", convex.p[id1].x, convex.p[id1].y, convex.p[id2].x, convex.p[id2].y); } return 0;}