算法之归并排序算法(merge sort)
归并排序算法1.算法原理
归并排序算法是分治法—ivide-and-Conquer)的典型应用。其操作的步骤如下:
Divide:把n个元素的序列分为两个元素个数为n/2的子序列。Conquer:递归的调用归并排序算法对两个子序列进行排序Combine:对排好序的子序列进行合并,得到最后排序的结果。归并算法用示意图表示如下:
归并排序算法的伪代码如下:
其中合并(MERGE)的伪代码如下:
#include <iostream>using namespace std;//将有二个有序数列a[first...mid]和a[mid...last]合并。void __merge(int a[], int first, int mid, int last, int temp[]){int i = first, j = mid + 1;int m = mid, n = last;int k = 0;while (i <= m && j <= n){if (a[i] <= a[j])temp[k++] = a[i++];elsetemp[k++] = a[j++];}while (i <= m)temp[k++] = a[i++];while (j <= n)temp[k++] = a[j++];for (i = 0; i < k; i++)a[first + i] = temp[i];}void __merge_sort(int a[], int first, int last, int temp[]){ if(first < last) { int mid = (first + last) / 2; __merge_sort(a, first, mid, temp); __merge_sort(a, mid + 1, last, temp); __merge(a, first, mid, last, temp); }}bool MergeSort(int a[], int n){ int *p = new int[n]; if(p == NULL) { return false; } else { __merge_sort(a, 0, n - 1, p); delete[] p; return true; }}int main(){ const int LEN = 10; int a[LEN] = {23, 40, 45, 19, 12, 16, 90, 39, 87, 71}; cout << "Before the merge sort, the Array is:" << endl; for(int i = 0; i < LEN; ++i) { cout << "a[ " << i + 1 << " ] is: "<< a[i] << endl; } cout << endl; MergeSort(a, LEN); cout << "After the merge sort, the Array is:" << endl; for(int i = 0; i < LEN; ++i) { cout << "a[ " << i + 1 << " ] is: "<< a[i] << endl; } return 0;}3.算法复杂度
该算法的时间复杂度为O(nlogn)
4.内容来源
链接:白话经典算法系列之五 归并排序的实现